No	Course Information (2019-2020)		
1	Unit name:	Digital communication I	
2	Code:	EcE 31002	
3	Classification:	Engineering subject	
4	Credit value:	3(2-2-0)	
5	Semester/ Year Offered:	1/3	
6	Pre-requisite:	EcE 21002 & 22001 Communication principles	
7	Mode of delivery:	Lecture, Tutorial, Discussion, Presentation	
8	Assessment system and breakdo	wn of marks: Tutorial, Examination	
	Tutorial	30%	
	Mid-term/ final Examination	70%	
9	Academic staff teaching unit:	Department of Electronic Engineering	
10	Course outcome of unit:		
	In this course, students will be a	ble	
	• To recognize terms and \dot{c}	lefinitions of the communication techniques	
	To explain the analogue	and digital communication techniques	
	 To apply the analogue and digital communication techniques in solving 		
	communication system problems		
11	Synopsis of unit:		
	The course introduces students to the study of communication system, its principles		
	and techniques. Course covers the analogue and digital modulation techniques,		
	multiplexing, noise that is the biggest problem of communication, coding techniques.		
	Analogue and digital communication subject is a comprehensive course in electronic		
	engineering and can be applie	d in the field of communication and any other various	
	applications.		
12	Topic:		
	1 Definition and te	erms	
	1.1 Introduction		
	1.2 Frequencies		
	1.3 Types of sign	al	
	1.4 Analogue signal		
	1.5 Digital signal		
	1.6 Waveforms		
	1.7 Measurement	of signal level	
1	1.8 Review quest	ions	

2	Analogue modulation principles
	2.1 Introduction
	2.2 Frequency band classifications
	2.3 Modulation techniques
	2.4 Amplitude modulation
	2.5 Frequency division multiplexing
	2.6 Modulation depth
	2.7 Practical circuits
	2.8 Angle modulation
	2.9 Comparison of amplitude, phase and frequency modulation
	2.10 Review questions
3	Spread spectrum systems
	3.1 Introduction
	3.2 Spread spectrum systems
	3.3 Spread spectrum system criteria
	3.4 Reasons for use of spread spectrum systems
	3.5 Pseudorandom cade generators, scramblers and descramblers
	3.6 Types of spread spectrum techniques
	3.7 Advantages and disadvantages of spread spectrum techniques
	3.8 Review questions
4	Digital modulation techniques
	4.1 Introduction
	4.2 Amplitude shift key modulation
	4.3 Frequency shift key modulation
	4.4 Phase shift key modulation
	4.5 Sixteen – quadrature amplitude modulation
	4.6 Bandwidths
	4.7 Differential phase modulation
	4.8 Review question
5	Pulse code modulation
	5.1 Introduction
	5.2 Time division multiplexing
	5.3 Principle of operation
	5.4 Recommended standards
	5.5 The 30/32 channels CEPT PCM system
	5.6 Aliasing distortion
	5.7 Quantising and encoding

		5.8 The 30/32 channel CEPT PCM system operation	
		5.9 Importance of frame and multiframe alignment	
		5.10 Alarms	
		5.11 Dependent regenerative repeaters	
		5.12 Power feeding	
		5.13 Review questions	
	6	Noise figure and noise temperature	
		6.1 Introduction	
		6.2 Internal noise	
		6.3 External noise	
		6.4 System performance	
		6.5 Noise figure/ noise factor	
		6.6 Effective noise temperature	
		6.7 Variation of noise figure with frequency	
	6.8 Review questions		
	7	Effects of noise and distortion on analogue and digital signals 7.1 Introduction	
		7.2 Amplitude distortion	
		7.3 Frequency distortion	
		7.4 Amplitude and frequency distortion	
		7.5 Limited bandwidth	
		7.6 Effects of noise	
14	Main references:		
	Analogue and	d Digital Communication Techniques by Grahmae Smile	
	1 st edition,2002		
15	Additional references:		
	1. Principle	of electronic communication systems, 3 rd edition, Louis E. Frenzel, Tata	
	McGraw	Hill, 2012	
	2. Question	bank in electronics & communication engineering, 3 rd edition, Dr. B. R.	
	Gupta and	l Vandana Singhal, J.S offset, 2012	
App	roved by	Prepared by	

Approved by

Prepared by

Daw Ni Ni San Hlaing

Lecturer

Department of Electronic Engineering

Technological University (Kyaukse)

No	Course Information (2019-2020)		
1	Unit name:	Analogue and Digital Electronics I	
2	Code:	EcE – 31025	
3	Classification:	Engineering Subject	
4	Credit value:	2.5 (2-0-1)	
5	Semester/ Year Offered:	1/3	
6	Pre-requisite:	NA	
7	Mode of delivery:	Lecture and Practical	
8	Assessment system and breakdown of marks:	Exam, lab report, assignments and tutorial	
	Practical	20%	
	Tutorial / Assignment	10%	
	Mid-Term Examination	70%	
	Academic staff teaching unit:	Department of Electronic Engineering	
	Course outcome of unit: After completion of this course, students	s will be able to	
	• describe the basic structure, parameters, characteristics and operations of analog components (diode, transistor, operational amplifier)		
	• calculate the parameters of basic electronic circuits (rectifier circuit, transistor		
	switching circuits and transistor biasing circuits)		
	• measure the characteristics of basic electronic component (diodes, transistor)		
	and demonstrate the basic electronic circuits (rectifier circuit, switching circuit, op amp circuit)		
9	Synopsis of unit:		
	The analog circuit will teach the fundamentals of diode application, BJTs and FET analog circuit design techniques used in today's advanced mixed-signal integrated- circuit applications. Topics to be covered include device/process background, IC passives, analog amplifiers, op-amp design, two thermal devices and other analog circuitry used in today's mixed-signal ICs. The digital circuit will teach the fundamentals of number systems and arithmetic, combinational logic, adder, 555 timer, counter and shift registers systems, frequency response, timing analysis, sequential digital circuit.		

10	Topic:	
	1	Diodes
		1.1 Introduction to PN Junction
		1.2 Forward and Reverse Bias of a Diode
		1.3 The Diode Characteristics
		1.4 Important Diode Parameters
		1.5 Diode Testing
		1.6 Load- line Analysis
	2	Diode Application
		2.1 Diode Equivalent Circuits
		2.2 Series Diode Configurations with DC Inputs
		2.3 Parallel and Parallel-Series Configuration
		2.4 Half-Wave and Full-Wave Rectifiers
		2.5 Clippers
		2.6 Clamper
	3	Bipolar Junctions Transistor(BJT)
		3.1 Basic BJT structures
		3.2 BJT symbols, current and voltage
		3.3 Basic BJT configuration
		3.4 Region of Operation
		3.5 Basic BJT equation
		3.6 Important BJT parameter
		3.7 BJT packages and terminal identification
		3.8 BJT Testing
	4	DC Biasing -BJT
		4.1 Operating Point
		4.2 Fixed-bias circuit
		4.3 Emitter-stabilized circuit
		4.4 Voltage divider bias circuit
		4.5 DC bias with voltage feedback
		4.6 Miscellaneous Bias Configurations
		4.7 Biasing circuit design
		4.7 Transistor switch network

		4.8 Troubleshooting techniques
		4.9 Analysis of PNP circuits
	5	Field- Effect Transistors (FET)
		5.1 Basic FET structures and symbols
		5.2 FET Configurations and V-I Characteristics
		5.3 Basic FET Equations
		5.4 Important FET Parameters
		5.5 Comparison between BJT and FET
	6	FET – Biasing
		6.1 Fixed-bias Configuration
		6.2 Self-bias Configuration
		6.3 Voltage-Divider Biasing
		6.4 Biasing the Deplection type MOSFET
		6.5 Biasing the Enhancement-type MOSFET
		6.6 Review Table of FET Biasing
		6.7 Biasing Circuit Design
	7	Operational Amplifier
		7.1 Operational Amplifier Basic
		7.2 The Ideal Operational Amplifier
		7.3 Common Operational Amplifier Circuits
	8	Two Terminal Devices
		8.1 Zener Diode
		8.2 Photodiodes
		8.3 Photoconductive Cell
		8.4 Emitters
		8.5 Solar cells
		8.6 Thermistors
11	Main refere	nces:
	Electronic I	Devices and circuits Third Edition JIMMIE J CATHEY at Laboratory, Devices Fourth Edition Thomas L Floyd Digital fundamentals 10th omas L.Floyd.
12	Additional	references:
L	1	

Information on Lab Practical

Lab	Activity
1	Topic: Testing Diode
	Task:
	 To apply diode and classify forward bias and reverse bias To discuss voltage and current of diode
	Resources: Diode, Multimeter, project board, resistor, LED, power supply
2	Topic: Half-wave Rectifier
	Task:
	 To define about half-wave rectifier To describe the output waveform of half wave rectifier
	• To describe the output waveform of half-wave rectifier
	Resources: diode, 220V transformer, oscilloscope
3	Topic: Testing NPN BJT and PNP BJT
	Task:
	 To classify NPN and PNP transistor To classify base, collector, emitter
	To classify base, concetor, childer
	Resources: transistor, Multimeter
4	Topic : Transistor as a switch
	Task :
	• To define a transistor can work as a switch
	• To apply transistor in other circuit
	Resources : Resistor, transistor, LED, power supply, project board
5	Topic : Adder
	Task :
	 To discuss the operation principle of adder To apply the Op-amp and resistor
	Resources : Resistor, Op-amp, power supply, project board

Daw Pyone Ei Ei Cho Assistant lecturer Department of Electronic Engineering

No	Course Information (2019-2020)		
1	Unit Name :	Engineering Circuit Analysis I	
2	Unit Code:	EcE 31001	
3	Classification :	Engineering Subject	
4	Credit Value :	3.5 (2-1-2)	
5	Semester /Year Offered : 1/3		
6	Pre-requisite (if any) :		
7	Mode of Delivery:	Lecture, Tutorial and Practical	
	Assessment System and Breakdown of Marks:		
	Practical	20%	
8	Tutorial/ Assignment	10%	
	Examination	70%	
9	Academic Staff Teaching Unit: Department of E	Electronic Engineering	
10	Learning Outcome of Unit:		
	After completing this unit, students will be able	to:	
	• determine the response of first order RL,	RC circuits and second order RLC circuits	
	• solve the RLC circuits either by using s-domain analysis		
	• simulate and construct the RL, RC and RLC circuits		
11	Synopsis of Unit:		
	The course covers RL circuits, RC circuits,	RLC circuits, Laplace transformation, circuit	
	analysis in the s-domain, frequency response, two-port networks and Fourier analysis.		
12	Topics and Contents		
	Topic 1: Basic RL and RC Circuits		
	• The Source-Free RL Circuit, Properties	of the Exponential response	
	The Source-Free RC Circuit		
	• A more general perspective		
	The Unit-Step Function		
	Driven RL Circuits		
	Natural and Force Response		
	Driven RC Circuits		
	Topic 2: The RLC Circuits		
	• The Source-Free parallel circuit		
	• The Overdamped parallel RLC circuit		
	Critical Damping		
	• The Underdamped parallel RLC circuit		

	The Source-Free series RLC circuit
	The Complete response of the RLC circuit
	The Lossless LC Circuit
	Topic 3: Complex Frequency and the Laplace Transform
	Complex Frequency
	The Damped Sinusoidal Forcing Function
	Definition of the Laplace Transform
	Laplace Transforms of simple time functions
	Inverse Transform Techniques
	Basic Theorems for the Laplace Transform
	The Initial-Value and Final-Value Theorem
	Topic 4: Circuit Analysis in the s-Domain
	• $Z(s)$ and $Y(s)$
	 Nodal and Mesh Analysis in the s-Domain
	Additional Circuit Analysis Techniques
	Poles, Zeros and Transfer Functions
	Convolution
	The Complex-Frequency Plane
	Natural Response and the s-Plane
	• A technique for synthesizing the Voltage Ratio $H(s) = V_{out}/V_{in}$
Main Ref	ferences:
1. Engine	eering Circuit Analysis, Eighth Edition, Willian H-Hayt, Jr.Jack E-Kemmerly, Steven M.Durbin
2012, ISI	BN 978-0-07-352957-8

Additional References:

2. Circuit Analysis, John E Whitehouse, 1997, ISBN 1-898563-40-3

Information on Lab Practical

1	Topic: Experiment 1: Response of First Order RL Circuit Outcomes:		
	To determine the time constant of an RL circuit.To plot the response of the first order RL circuit.		
	Resources: Multisim Software		
2	Topic: Experiment 2: Response of First Order RC Circuit Outcomes:		
	• To determine the time constant of an RC circuit.		
	• To plot the frequency response of the first order RC circuit.		
	Resources: Multisim Software		
3	Topic: Experiment 3: Response of Second Order RLC Series Circuit		
	Outcomes:		
	• To describe the transient response to a step input.		
	• To observe the second-order circuit response waveforms over-damping, critical damping and underdamping.		
	 To plot the frequency response of second-order circuit 		
	Resources: Multisim Software		
4	Topic: Experiment 4: Laplace Transform for RLC Circuit		
	Outcomes:		
	• To demonstrate the Laplace transform techniques		
	• To plot the response of a series RLC circuit to a step function using Matlab		
	Resources: Matlab software, Computer		
5	Topic: Experiment 5: Wien Bridge Oscillator Circuit		

Outcomes:

- To simulate the Wien Bridge oscillator using multisim software.
- To find the effect on output frequency with variation in RC combination.

Resources: Multisim Software

Daw Pyone Ei Ei Cho Assistant Lecturer Department of Electronic Engineering

No	Course Information (2019-2020)		
1	Unit name:	Modeling and Control I (2019-2020)	
2	Code:	EcE 31003	
3	Classification:	Engineering subject	
4	Credit value:	3(2-1-1)	
5	Semester/ Year Offered:	1/3	
6	Pre-requisite:	EcE 21001&21002 ,Electronics Engineering	
		Circuit	
7	Mode of delivery:	Lecture, Practical, Tutorial, Discussion,	
		Presentation	
8	Assessment system and	Tutorial, Practical, Examination, Lab report	
	breakdown of marks:		
9	Tutorial	10%	
	Practical	20%	
	Mid-term Examination	70%	
10	Academic staff teaching unit:	Electronic Engineering	
11	Course outcome of unit:		
	In this course students will be able		
	To explain the basic open loop and closed-loop system		
	To know transfer function of electrical systems from mechanical systems		
	To solve problems by using Laplace transform method, state differential		
	equation and state variable models		
	 To solve problems in control system by using Matlab software 		
12	Synopsis of unit:-		
	The course covers the fundamenta	l of process for designing a control system. The	
	course introduces students to understand the purpose of a control systemwhich		
	includes the use of control design strategies, the Laplace transform, the mathematic models of the systems, the transfer function of linear systems and signal flow gra models, the state variables of dynamic systems, the state differential equation, t		

time response and the state transition matrix, open-loop and closed-loop systems, and sensitivity of control systems to
parameter variations and control of the transient response of control systems.
Disturbance signals in a feedback control system, steady-state error, test input signals, performance of a second- order system response, estimation relative stability of feedback control systems and the stability of state variable systems will also be learned.

13	Topic:		
	Chapter		Title
	1	Introduction to Control Systems	
		1.1	Introduction
		1.2	Brief History of Automatic Control
		1.3	Example of Control Systems
		1.4	Engineering Design
		1.5	Control Systems Design
		1.6	Mechatronic Systems
		1.7	Green Engineering
		1.8	The Future Evolution of Control Systems
		1.9	Design Examples
		1.10	Sequential Design Example: Disk Drive Read System
		1.11	Summary
	2	Math	ematical Models of Systems
		2.1	Introduction
		2.2	Differential Equations of Physical Systems
		2.3	Linear Approximations of Physical Systems
		2.4	The Laplace Transform
		2.5	The Transfer Function of Linear Systems
		2.6	Block Diagram Models
		2.7	Signal -Flow Graph Models
		2.8	Design Examples
		2.9	The Simulation of Systems Using Control Design Software
		2.10	Sequential Design Example: Disk Drive Read System
		2.11	Summary

3	State	Variable Models
	3.1	Introduction
	3.2	The State Variables of a Dynamic System
	3.3	The State Differential Equation
	3.4	Signal-Flow Graph and Block Diagram Models
	3.5	Alternative Signal-Flow Graph and Block Diagram Models
	3.6	The Transfer Function from the State Equation
	3.7	The Time Response and the State Transition Matrix
	3.8	Design Examples
	3.9	Analysis of State Variable Models Using Control Design
		Software
	3.10	Sequential Design Example: Disk Drive Read System
	3.11	Summary
1	Matla	b Fundamentals
	1.1 Ma	atlab Basis Operations
	1.2 Ma	atrix Operations
	1.3 Ar	ray Operations
	1.4 Co	mplex Numbers
	1.5 Th	e Colon Symbol (:)
	1.6 M-	files
2	Pl	otting Commands
	2.1 Gr	aph Functions
	2.2 X-	Y Plots and Annotations
	2.3 Lo	garithmic and Polar plots
	2.4 Sci	reen Control
3	С	ontrol Statements
	3.1 For	r Loops
	3.2 If s	statements
	3.3 WI	nile loop
	3.4 Inp	out/Output Commands

14	Main references:
	Modern Control System, 11 th Edition, Richard C. Dorf and Robert H. Bishop
	Electronics and Circuit Analysis using MATLAB
15	Additional references:
	Notes by Modern Control System(11 st Edition),Richard C. Dorf and Robert H. Bishop,
	Prentice-Hall,Upper Saddle
	(<u>http://www</u> . Mypearsonstore.com>bookstore)

Prepared by Daw Win Yu Cho Lecturer Department of Electronic Engineering Technological University (Kyaukse)

Information on Lab Practical (EcE-31003 Modeling and Control)

-

г

Lab	Activity		
1	Experiment 1: Evaluate the complex number by using MATLAB Software		
	Objectives:		
	• To apply Matlab software as a calculation tools		
	To apply Matlab/Simulink Software		
	Equipment required:		
	Matlab software, Personal computer		
2	Experiment 2: If-else if statement by using MATLAB Software		
	Objectives:		
	• To apply Matlab software as a calculation tools		
	To apply Matlab/Simulink Software		
	Equipment required:		
	• Matlab software, Personal computer		
3	Experiment 3: To plot v(t) and i(t) versus time(t) by using MATLAB Software		
	Objectives:		
	• To apply Matlab software as a calculation tools		
	• To understand the voltage and power calculation		
	To apply Matlab/Simulink Software		
	Equipment required:		
	• Matlab software, Personal computer		

4	Experiment 4: If-else if statement and For loop repetition statement by using		
	MATLAB Software		
	Objectives:		
	• To apply Matlab software as a calculation tools		
	• To generate the Fibonacci sequence up to the twelfth term		
	• To convert analog signal x to digital signal y		
	To apply Matlab/Simulink Software		
	Equipment required:		
	• Matlab software, Personal computer		
5	Experiment 5: To draw a graph of gain versus frequency and $x(t)$ versus $y(t)$ by		
	using MATLAB		
	Objectives:		
	• To apply the Matlab software as a calculation tools		
	• To build the Matlab program to draw Bode Plot of an amplifier using semilogx function		
	• To determine the value of $x(t)$ and $y(t)(t = 0 \text{ to } 10 \text{ ms})$		
	• To plot x(t) versus y(t)		
	To apply Matlab/Simulink Software		
	Equipment required:		
	• Matlab software, Personal computer		

Prepared by Daw Win Yu Cho Lecturer Department of Electronic Engineering Technological University (Kyaukse)

No		Course Inform	nation (2019-2020)
1	Unit name:		Engineering Electromagnetic I
2	Code:		EcE 31011
3	Classification:		Engineering subject
4	Credit value:		2.5 (2-1-0)
5	Semester/ Year Offe	ored:	1/3
6	Pre-requisite:		Engineering Mathematics,
			Engineering Physics
7	Mode of delivery:		Lecture
8	Assessment system a	and breakdown of	Tutorial, Assignment, Examination
	marks:		
	Tutorial, Assignmen	t	30%
	Mid-term/ Final Exa	mination	70%
9	Academic staff teach	ning unit:	Electronic Engineering
10	Course outcome of u	init:	I
	After completion of	this course, students	s will be able to
	1. Discuss the p	principles and conce	pts of electric fields.
	2. Apply the appropriate laws, theorems and techniques to solve electric field		
	problems.		
11	Synopsis of unit:		
	This course will provide all students with the fundamental concepts associated		nts with the fundamental concepts associated
	with electromagnetic fields. Important topics include: Maxwell's equations		
	electrostatic and steady- magnetic fields. Successful completion of this course will		
	allow students to stu	dy more advanced t	opics in the area of microwave engineering.
12	Topic:		
	Chapter	Title	
	1.	Vector Analysis	
		1.1 Scalar and Vect	ors
		1.2 Vector Algebra	
		-	r Coordination System
		-	ents and Unit Vectors
		1.5 The Vector Fiel	
		1.6 The Dot Produc	t

	1.7 The Cross Product
	1.8 Other Coordinate System: Circular Cylindrical Coordinates
	1.9 The Spherical Coordinate System
	2. Coulomb forces and Electric Field Intensity
	2.1 The Experiment Law of Coulomb
	2.2 Electric Field Intensity
	2.3 Field arising from a continuous volume charge distribution
	2.4 Field of a Line Charge
	2.5 Field of a Sheet Charge
	2.6 Streamlines and Sketches of Fields
	3. Electric Flux Density, Gauss's Law, and Divergence
	3.1 Electric Flux Density
	3.2 Gauss's Law
	3.3 Application of Gauss's Law: Some Symmetrical Charge
	Distributions
	3.4 Application of Gauss's Law: Differential Volume Element
	3.5 Divergence and Maxwell's First Equation
	3.6 The Vector Operator and The Divergence Theorem
	4. Energy and Potential
	4.1 Energy expended in moving a point charge in an electric
	Fields
	4.2 The Line Integral
	4.3 Definition of Potential Difference and Potential
	4.4 The Potential field of a point charge
	4.5 The potential field of a system of charges: conservation
	Property
	4.6 Potential Gradient
	4.7 The Electric Dipole
	4.8 Energy density in the Electrostatic field
14	Main references:
	Engineering Electromagnetic, Eighth Edition by William H.Hayt, Jr. and John A.
	Buck
15	Additional references:

No	Course I	nformation (2019-2020)
1	Unit name:	Integrated Electronics I (2019-2020)
2	Code:	EcE 31021
3	Classification:	Engineering subject
4	Credit value:	3 (2-1-1)
5	Semester/ Year Offered:	1/3
6	Pre-requisite:	EcE 21011&22011, Microelectronics I & II
7	Mode of delivery:	Lecture, Practical, Tutorial
8	Assessment system and breakdown of marks:	Tutorial, Lab Report, Lab activity
	Tutorial	10%
	Practical	20%
	Mid-term Examination	70%
9	Academic staff teaching unit:	Department of Electronic Engineering
10	amplifier circuit, BJTs and FITo calculate the parameters of	arious semiconductor devices, switching circuits, ETs amplifier frequency response. f amplifiers and switching circuits. amplifier circuit using Multisim software.
11	Synopsis of unit: The course introduces students to learn the basics of operational amplifiers and general purpose of op-amp as basic and advanced aspects of analog integrated circuit design and about stability requirements and how to compensate op-amp circuit to ensure stable operation. In practical op-amp circuits, its parameters that will be consider in detail. Application and design of integrated circuits is to increase the skills of designing electronics circuits to meet particular specifications and to perform particular function.	
	Topic:	

Chapter	Title
10	Amplifier Frequency Response
	10–1 Basic Concepts
	10–2 The Decibel
	10–3 Low-Frequency Amplifier Response
	10–4 High-Frequency Amplifier Response
	10–5 Total Amplifier Frequency Response
	10–6 Frequency Response of Multistage Amplifiers
	10–7 Frequency Response Measurements
11	Thyristors
	11–1 The Four-Layer Diode
	11–2 The Silicon-Controlled Rectifier (SCR)
	11–3 SCR Applications
	11–4 The Diac and Triac
	11–5 The Silicon-Controlled Switch (SCS)
	11–6 The Unijunction Transistor (UJT)
	11-7 The Programmable Unijunction Transistor (PUT)
12	The Operational Amplifier
	12–1 Introduction to Operational Amplifiers
	12–2 Op-Amp Input Modes and Parameters
	12–3 Negative Feedback
	12–4 Op-Amps with Negative Feedback
	12–5 Effects of Negative Feedback on Op-Amp Impedances
	12–6 Bias Current and Offset Voltage
	12–7 Open-Loop Frequency and Phase Responses
	12–8 Closed-Loop Frequency Response
	12–9 Troubleshooting
13	Basic Op-Amp Circuits
	13–1 Comparators
	13–2 Summing Amplifiers
	13–3 Integrators and Differentiators
	13–4 Troubleshooting
14 Main refere	ences:

	THOMAS L. FLOYD, ELECTRONIC DEVICES(9th Edition)
	DONALD A NEAMEN, Microelectronics: Circuit Analysis and Design, 4 th Edition
	S SALIVAHANAN, V S KANCHANA BHAASKARAN; LINEAR INTEGRATED
	CIRCUITS
15	Additional references:
	1:http//www.amazon.com > microelectronics_
	2:http//www.pearsonhighrged.com/fioyd
	<u>3:http//pdfs.semanticscholar.org></u>
1	

Lab	Activity
1	Experiment: 1 Low Frequency Response of RC Amplifier using Multisim
	Software
	Objectives:
	• To constructs the RC amplifier.
	• To recognize the low frequency response of amplifier
	Require Equipment:
	Computer & Multisim Software
2	Experiment: 2 Inverting and Non-inverting Amplifier using Multisim Software
	Objectives:
	• To construct the Inverting and Non-inverting Amplifier.
	• To recognize the phase variations of input and output waveform.
	Require Equipment:
	Computer & Multisim Software
	Experiment: 3 Comparator circuit using Multisim Software
3	Objectives:
	• To construct the comparator circuit.
	• To recognize the output waveform.
	Require Equipment:
	Computer & Multisim Software

4	Experiment: 4 Summing Amplifier circuit using Multisim Software
	Objectives:
	• To construct the Summing Amplifier circuit.
	• To recognize the output waveform.
	Require Equipment:
	Computer & Multisim Software
5	Experiment: 5 Integrator and Differentiator circuit using Multisim Software
	Objectives:
	• To construct the Integrator and Differentiator circuit.
	• To recognize the output waveform.
	Require Equipment:
	Computer & Multisim Software