No.	Information of the subject				
1.	Unit name:	Cell Biology I			
2.	Code:	BioT-21011			
3.	Classification:	Core subject			
4.	Credit value:	3.5			
5.	Semester/Year Offered:	1/2			
6.	Pre-requisite:	Basic Science			
7.	Mode of delivery:	Presentations, Lectures, Practical, Discussion			
8.	Assessment system and breakdown of marks:	Practical and Assignments			
	Practical and Assignments	30%			
	Mid-term exam	35%			
	Final exam	35%			
9.	Academic staff teaching unit:	Department of Biotechnology			
	Course outcome of unit: the students are able:				
	1. To explain the fundamental unit of life				
	2.To compare the structures and purposes of basic components of prokaryotic and				
	eukaryotic cells				
10.	3.To explain the functions of cellular organelles.				
	4.To classify and to write chemical bonds in living	g organisms			
	5.To examine the main classes of small molecules found in cells and theirbiological roles				
	6.To explain macromolecules in cells and to describe the molecules from which cells are				
	made and their structures, shapes and chemical pro-	operties			
	Synopsis of unit:				
	Cell Biology is the basic subject for unde	rgraduate Biotechnology students. The			
	study of basic components of prokaryotic and eukaryotic cells support in any field of				
	Biotechnology. This course provides the background knowledge of the cell biology. We				
11	firstly introduce what is the cell and their unity and diversity.				
11.	After that, the students will study the structural illustration pictures of different kinds of				
	cells that were taken under the light microscope and electron microscope. This course				
	inction of each cellular components and				

	how to classify the living things according to their structure and chemical requirements.							
	The second chapter will explain the chemical molecules from which cells are made and							
	how these molecules determine the size, structure, and functions of living cells. By							
	understanding how they interact, we can begin to see how cells exploit the laws of							
	chemistry and physics to survive, thrive and reproduce.							
	Topics							
	1. Unity and Diversity of Cells							
	2. Prokaryotic and Eukaryotic Cells							
12	3. Cellular Components							
12.	4. Model Organisms							
	5. Chemical Components of Cells							
	6. Small Molecules in Cells							
	7. Macromolecules in Cells							
	Main reference:							
12	• Bruce Alberts, Dennis Bray, Karen Hopkin, Alexander Johnson, Julian Lewis,							
15.	Martin Raff, Keith Roberts, and Peter Walter, 'Essential Cell Biology', 4th							
	Edition, Garland Science, Taylor & Francis Group.							
	Additional references:							
1.4	• Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff,							
14.	Keith Roberts and Peter Walter, "Molecular Biology of THE CELL", 6 th Edition,							
	Garland Science, Taylor & Francis Group.							

No.	Information	of Subject				
1	Unit name:	Microbiology I				
2	Code:	Bio T 21021				
3	Classification:	Core subject				
4	Credit value:	3.5				
5	Semester/ Year Offered:	1/2				
6	Pre-requisite:					
7	Mode of delivery:	Lectures and discussion				
8	Assessment system and breakdown of marks:	Multiple choice questions, short question,				
		short notes, long question and practical exam				
	Practical	30 %				
	Mid-term examination	35%				
	Final examination	35%				
9	Academic staff teaching unit:	Department of Biotechnology				
10	Course outcome of unit:					
	After completion of this course, students will ab	le to				
	1. Generalize within multiple microbiology	disciplines the core theories and practices				
	2. Identify the theoretical basis of the techn	ical methods on common microbiology				
	3. Solve the practical skills in the use of t	ools, technologies and basic methods common				
	microbiology					
	4. Recognize knowledge of the interaction	on between humans and microorganisms and				
	introduce the fundamental characteristics	s of various microorganisms				
	5. Apply the appropriate microbiological lab equipment and methods, in order to conduct					
	and analyze experimental measurements relevant to microbiology					
11	Synopsis of unit:					
11	The course covers the introduction to the world	of microorganisms through about some of the				
	general areas such as medicine, environmental science, food and drink production, fundamental					
	research, agriculture, pharmaceutical industry and genetic engineering. And then there are the					
	understanding cells and cell membranes: differences between prokarvotes and eukarvotes. And					
	it includes about the classification and taxonomy of prokaryotes, systematics, identification of					
	hacteria other methods of identification Final	ly it describes the major characteristics of the				
	four groups of microorganisms: describes as	a result of observations the structures and				
	reproduction: general structure and life circle of	a result of observations, the structures and a				
	nemod retro viruses	viruses including a named bacteriophage and a				
	hamed reno-viruses.					
12	Topics:					
	1. Microbiology: What, Why and How?					
	2. Differences Between Prokarvotes and En	karvotes				
	3. Systematics	···				
	4. Microbiology and Biotechnology					
13	Main references:					

	• Essential Microbiology; Second Edition, © 2013 by John Wiley & Sons, Ltd; Stuart Hogg
	 BIOS INSTANT NOTE ON MICROBIOLOGY; Fourth edition, Simon Baker, Caroline Griffiths, Jane Nicklin, © 2011 by Garland Science, Taylor & Francis Group, LLC Microbiological Applications; Benson, Eighth Edition: Laboratory Manual in General Microbiology; © The McGraw-Hill Companies 2001
14	Additional references:
	 Essential of Microbiology; First Edition, 2016; Surinder Kumar, Maulana Azad Medical College, India PRESSCOTT, HARLEY, AND KLEIN'S MICROBIOLOGY, 7th Edition, 2008, Joanne M. Willey, Linda M. Sherwood, Christopher J. Woolverton

Bio T 21021 Microbiology I Course Outcomes and Indicators

No.	Course Outcomes	Indicators
1	General within multiple microbiology	
	disciplines the core theories and practices	
2	Identify the theoretical basis of technical	
	methods on common microbiology	
3	Solve the practical skills in the use of	Excellent: Eail $-0\% \& A > 20\%$
	techniques and basis methods microbiology	Excelent. $T an = 0.0 cc T \leq 20.0$
4	Recognize and knowledge of the interaction	Good Fail $\leq 15 \%$
	between humans and microorganisms and	Fair Fail < 25%
	introduce the fundamental characteristics of	
	the various microorganisms	Poor : Fail $> 25\%$
5	Apply the appropriate microbiological lab	
	equipment and methods, in order to conduct	
	and analyze experimental measurements	
	relevant to microbiology	

Matrix of CO and PO

со					Prog	ram Ou	utcome	5				
	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
а	C2											
b					C1							
с					P3							
d	C2											
e	C3								P3			

Assessment Scheme Rubric for Class Activity

Dimension	Marks			
	2	4	6	
Participation	Less participate	More participate	Participate actively	

** Act in leading role will earn 4 marks extra.

Department of Biotechnology Microbiology I (Bio T 21021) Practical timetable (2019-2020, semester I) Microbiology laboratory, Room- 2/ 1- 5

Sr.	Date	Title	Subtitle	Chemicals	Equipment	Remark
1	13.12.2019	Welcome to Microbiology Laboratory	-	-	- Projector - Computer	- Power Point presentation
2	27.12.2019	Microbiology Safety and Rules	-	-	- Projector - Computer	- Power Point presentation
3	10.01.2020	Introduction to Microscope	 Compound Light Microscope Compound Light Microscope Parts & Functions 	_	-Compound Light Microscope	
4	31.01.2020	Good microbiological laboratory practice (GMLP)	Resources – Equipment and use	_	- Projector - Computer	- Power Point presentation
5	14.02.2020	Good microbiological laboratory practice (GMLP)	Apparatus and Use	-	- Projector - Computer	- Power Point presentation
6	28.02.2020	Staining procedure	Gram positive and Gram negative	 Crystal violet solution Iodine solution Spirit Safranin solution 	- Glass slides - Pipette	- Power Point presentation

Course Specification

Bio T 21021 & 22021 Microbiology

(2019 - 2020)

Microbiology: What, Why and How? What is microbiology? Why is microbiology important? How do we know? Microbiology in perspective: to the Golden Age and beyond; Light microscopy; Electron microscopy; Differences Between Prokaryotes and Eukaryotes; Understanding cells and cell membranes; Prokaryotes; Eukaryotes; Prokaryotic systematics; Classification and taxonomy: Identification of prokaryotes; Phylogeny of prokaryotes; Identification of Bacteria; Identification from growth characteristics; Other methods of identification; Identification of pathogens; Inference of phylogeny from rRNA gene sequence; Bacterial phylogeny; The molecular clock concept; Ribosomal RNA (rRNA); Acquisition of 16S rRNA gene sequence; 16S rRNA gene bioinformatics; Kingdom Prokaryotae; Bacteria; The bacterial cell wall; Shapes of bacteria; Reproduction; Binary fission in Escherichia coli; Conjugation, transformation and transduction; Plasmids; the economic importance of bacteria; Cyanobacteria (blue-green bacteria); Structure of cyanobacteria; Nitrogen fixation; The economic importance of blue-greens; Kingdom Protoctista; The economic importance of protozoa; Kingdom fungi; Phylum Zygomycota (zygomycetes); Phylum Ascomycota (ascomycetes); Phylum Basidiomycota (basidiomycetes); Fungal spores; Viruses; Structure of viruses; Shapes of viruses; The life cycle of a virus; Viruses as disease-causing agents; Retroviruses; Laboratory safety and aseptic technique; Nutritional requirements; Culture media; Selective media; The production of sterilized nutrient media; To prepare sterile nutrient agar plates; Inoculating solid and liquid media; Growth in bacteria; Total counts; Viable counts; Constructing a growth curve; Continuous cultures; Growth in fungi; Growth curve for a filamentous fungus; Factors affecting microbial growth; Growth of bacteriophages

No	Information of the subject				
1	Unit name:	Organic chemistry			
2	Code:	BioT21031			
3	Classification:	Core subject			
4	Credit value:	3			
5	Semester/ Year Offered:	1/2			
6	Pre-requisite:	Ten Standard Chemistry, Che 11011			
		Engineering Chemistry			
7	Mode of delivery:	Explain by Drawing structure and			
		equations, Solving problems, computer			
		application, Practical, Quiz, Discussion			
8	Assessment system and breakdown of	Fill in the blanks, Multiple choice, short			
	marks:	questions, problems, short notes, practical			
	Fill in the blanks, Multiple choice,	70%			
	problems, short questions, Short notes practical results, practical exam.	30%			
	Animation and viva test				
9	Academic staff teaching unit:	Department of Biotechnology			
10	Course outcome of unit:				
	After completion of this course, students will be able				
	To rank increasing or decreasing order of boiling points, melting points, and				
	solubility of organic compounds				
	To assign the stereoisomers of compounds				
	To differentiate SN1, SN2, E1, or E2 me	chanism the reactions of alkyl halides			
	To write preparation and reaction mecha	nisms of alcohol, ether, and epoxides			
	To classify the reactions must be oxidation	on or reduction			
	To determine the structure of the compo	unds by using general features of mass			
	spectrometry and IR spectroscopy				
11	Synopsis of unit:				
	All biomolecules are organic compoun	ds; therefore organic chemistry is the core			
	supplements for the biotechnologist and	researchers. The valuable information from			
	this subjectwill fulfillthe variable requi	rements of human.Organic chemistry is the			
	basic for further study of biochemistry	that is important for biotechnology. Organic			
	molecules with different functional gro	ups can give different physical and reactive			

	properties. These effects are occurred in nylon production, soap solubility, and					
	solubility of vitamins. The role of stereochemistry occur in chiral drugs productions.					
	determination of oder of leaves, name impulse transmission ato. In calls advandling					
	determination of odor of leaves, herve impulse transmission etc. In cells adrenatine					
	are produced by nucleophillic substitution reactions. Both nucleophillic and					
	elimination reactions are used in industrial products productions such as aspirin					
	synthesis, quinine synthesis, pesticide, plastic, and fruit ripening.Bronchodilators					
	from epoxide are used to treat asthma. Oxidation reduction reactions are the main					
	role in biochemical reactions of the cells. Oxidation reduction reactions are applied in					
	green chemistry. Mass spectrometry, and IR methods are very useful for research					
	areas such as protein structure determination, molecular weight identification, and					
	functional group determination.					
12	Topic:					
	3 Introduction to Organic Molecules and					
	Functional Groups					
	3.1 Functional Groups					
	3.2 An Overview of Functional Groups					
	3.3 Intermolecular Forces					
	3.4 Physical Properties					
	3.5 Application: Vitamins					
	3.6 Application of Solubility: Soap					
	3.7 Application: The Cell Membrane					
	3.8 Functional Groups and Reactivity					
	3.9 Biomolecules					
	5 Stereochemistry					
	5.1 Starch and Cellulose					
	5.2 The Two Major Classes of Isomers					
	5.3 Looking Glass Chemistry—Chiral and Achiral Molecules					
	5.4 Stereogenic Centers					
	5.5 Stereogenic Centers in Cyclic Compounds					
	5.6 Labeling Stereogenic Centers with R or S					
	5.7 Diastereomers					
	5.8 Meso Compounds					
	5.9 R and S Assignments in Compounds with Two or More Stereogenic Centers					
	5.10 Disubstituted Cycloalkanes					
	5.11 Isomers—A Summary					
	5.12 Physical Properties of Stereoisomers					
	5.13 Chemical Properties of Enantiomers					
	7 Alkyl Halides and Nucleophilic Substitution					
	7.1 Introduction to Alkyl Halides					
	7.2 Nomenclature					
	7.3 Physical Properties					
	7.4 Interesting Alkyl Halides					
	7.5 The Polar Carbon–Halogen Bond					
	7.6 General Features of Nucleophilic Substitution					

	7.7 The Leaving Group
	7.8 The Nucleophile
	7.9 Possible Mechanisms for Nucleophilic Substitution
	7.10 Two Mechanisms for Nucleophilic Substitution
	7.11 The SN2 Mechanism
	7.12 Application: Useful SN2 Reactions
	7.13 The SN1 Mechanism
	7.14 Carbocation Stability
	7.15 The Hammond Postulate
	7.16 Application: SN1 Reactions, Nitrosamines, and Cancer
	7.17 When Is the Mechanism SN1 or SN2?
	7.18 Vinyl Halides and Aryl Halides
	7.19 Organic Synthesis
	8 Alkyl Halides and Elimination Reactions
	8.1 General Features of Elimination
	8.2 Alkenes—The Products of Elimination Reactions
	8.3 The Mechanisms of Elimination
	8.4 The E2 Mechanism
	8.5 The Zaitsev Rule
	8.6 The E1 Mechanism
	8.7 SN1 and E1 Reactions
	8.8 Stereochemistry of the E2 Reaction
	8.9 When Is the Mechanism E1 or E2?
	8.10 E2 Reactions and Alkyne Synthesis
	8.11 When Is the Reaction SN1, SN2, E1, or E2?
	9 Alcohols, Ethers, and Epoxides
	9.1 Introduction
	9.2 Structure and Bonding
	9.3 Nomenclature
	9.4 Physical Properties
	9.5 Interesting Alcohols, Ethers, and Epoxides
	9.6 Preparation of Alcohols, Ethers, and Epoxides
	9.7 General Features—Reactions of Alcohols, Ethers, and Epoxides
	9.8 Dehydration of Alcohols to Alkenes
	9.9 Carbocation Rearrangements
	9.10 Dehydration Using POC13 and Pyridine
	9.11 Conversion of Alcohols to Alkyl Halides with HX
	9.12 Conversion of Alcohols to Alkyl Halides with SOCl2 and PBr3
	9.13 Tosylate—Another Good Leaving Group
	9.14 Reaction of Ethers with Strong Acid
	9.15 Reactions of Epoxides
	9.16 Application: Epoxides, Leukotrienes, and Asthma
	9.17 Application: Benzo[a]pyrene, Epoxides, and Cancer
	12 Oxidation and Reduction
	12.1 Introduction
	12.2 Reducing Agents
	12.3 Reduction of Alkenes
	12.4 Application: Hydrogenation of Oils
	12.5 Reduction of Alkynes
1	12.6 The Reduction of Polar C–X σ Bonds

	12.7 Oxidizing Agents
	12.8 Epoxidation
	12.9 Dihydroxylation
	12.10 Oxidative Cleavage of Alkenes
	12.11 Oxidative Cleavage of Alkynes
	12.12 Oxidation of Alcohols
	12.13 Green Chemistry
	12.14 Application: The Oxidation of Ethanol
	12.15 SharplessEpoxidation
	13 Mass Spectrometry and Infrared Spectroscopy
	13.1 Mass Spectrometry
	13.2 Alkyl Halides and the $M + 2$ Peak
	13.3 Other Types of Mass Spectrometry
	13.4 Electromagnetic Radiation
	13.5 Infrared Spectroscopy
	13.6 IR Absorptions
	13.7 IR and Structure Determination
14	Main references:
	Organic Chemistry Second Edition Janice Gorzynski Smith
	University of Hawai'i at Manoa
5	Additional references:
5	
	Organic Chemistry Third EditionJanice Gorzynski Smith
	University of Hawai'i at Ma-noa

No.	Information of the subject	
1.	Unit name:	Bioprocess Engineering I
2.	Code:	BioT21051
3.	Classification:	Core subject
4.	Credit value:	3.5
5.	Semester/Year Offered:	1/2
6.	Pre-requisite:	-
7.	Mode of delivery:	Presentations, Lectures, Discussion
8.	Assessment system and breakdown of marks:	Class work, Tutorials
	Practical	30%
	Mid-term exam	35%
	Final exam	35%
9.	Academic staff teaching unit:	Department of Biotechnology
10.	 Course outcome of unit: After completion of this course, students will be able to to study the basic principles and calculation techniques used in the field of chemical and bioprocess engineering to explain process variables and their importance in real-world engineering problems to explain the fundamentals of material balanceas applied to chemical and bioprocess engineering and solve the material balance problems 	
11.	Synopsis of unit: Biotechnology is an inter-disciplinary applied science and those scientists trained in molecular biology and cell manipulation shall fulfil only a part of complete picture of biotechnology. Bringing out the full benefits of biotechnology requires sustainable manufacturing capability involving large-scale processing of biological material. In that sense, this course will fill the gap of the engineering knowledge and practices which are becoming a norm in the current trend of biotechnology in Myanmar.	
12.	Topics1. System of units2. Conversion of units3. Significant Figures4. The Mole and Molecular weight5. Density and Specific gravity6. Temperature	

	7. Pressure and Hydrostatic head	
	8. Introduction to Material balance	
	9. General strategy for solving material balance problems	
13.	Main reference:	
	• David M. Himmelblau and James B.Riggs, "Basic Principles and Calculations in	
	Chemical Engineering", 8 th Edition. Prentice Hall International Series.	
14.	Additional references:	
	Pauline M. Doran, "Bioprocess Engineering Principles", Academic Press, An	
	Imprint of Elsevier	
	• Richard M. Felder and Ronald W. Rousseau, "Elementary Principles of Chemical	
	Processes", 3 rd Edition, John Wiley and Sons, Inc.	

No.	Information of the subject		
1.	Unit name:	Molecular Genetic	
2.	Code:	BioT 22041	
3.	Classification:	Core subject	
4.	Credit value:	3.5	
5.	Semester/Year Offered:	2/2	
6.	Pre-requisite:	NA	
7.	Mode of delivery:	Presentations, Lectures	
8.	Assessment system and breakdown of marks:	Tutorial	
	Tutorial	20%	
	Mid-term exam	40%	
	Final exam	40%	
9.	Academic staff teaching unit:	Department of Biotechnology	
10.	 Course outcome of unit: After completion of this course, students will be able to learn the structure of DNA and chromosome organization Recognize the mechanism of DNA replication in both prokaryotes and eukaryotes Realize the different types of RNAs and their functions produced in prokaryotes and eukaryotes and transcription mechanisms in both cell types Describe the general structure of amino acids, levels of protein structure and translation mechanisms in both prokaryotes and eukaryotes 		
11.	Synopsis of unit: This module of molecular genetics is designed to give the knowledge and comprehension of the structure of DNA and chromosome, DNA replication, gene		
12.	 expression and control in both prokaryotes and eukaryotes and mutations. Topics DNA Structure and Chromosome Organization DNA Replication Gene Expression – Transcription Gene Expression – Translation Mutations 		
13.	Main reference:David R Hyde: "Introduction to Genetic Principles"		
14.	Additional references: • Waston et al., "Molecular Biology of the Gene"		