No	Information of Electronic Devices and Circuits (Analog)		
1	Unit name:	Electronic Devices and Circuits (Analog)	
2	Code:	NE-3031	
3	Classification:	Basic Electronic Subject	
4	Credit value:	3	
5	Semester/ Year Offered:	2/3	
6	Pre-requisite:	NA	
7	Mode of delivery:	Lecture, Practical	
8	Assessment system and breakdown of marks:	Assignment, Tutorial, Exam	
	Practical	20%	
	Tutorial	20%	
	Midterm	30%	
	Exam	30%	
9	Academic staff teaching unit:	Department of Nuclear Technology	
10	Course outcome of unit:		
	After completion of this course, students will be able to		
	1. explain insulators, conductors, semiconductors, n-type and p-type semiconductors		
	2. calculate and determine forward and reverse voltages and currents for diodes and to		
	analyze the ripple factor for filtered bridge rectifier circuit		
	3. calculate and determine the maximum and minimum input voltages for zener diode		
	4. calculate and explain I_B , I_C , I_E , V_{BE} , V_{CE} and V_{CB} in the BJT transistor circuits		
	5. calculate and determine the Q-point value for IC and VCE for base bias, emitter bias,		
	emitter-feedback bias, collector-feedback bias, and voltage divider bias circuits		
	6. explain Attenuation, CMRR, Common-Base Amplifier, Common-Emitter Amplifier,		
	Common-Collector Amplifier, Differential Amplifier and determine the dc collector voltage		
	and the ac collector voltage for amplifier circuits		
	7. derive and determine closed-loop voltage gain, input and output impedances of amplifiers		
	8. derive and determine mid-range open-loop voltage gain, and attenuation of RC Lag circuit		
	and plot the curve of the phase-shift versus frequency		
	9. explain bandwidth (BW), phase shift, and slew rate and determine the bandwidths of each		
	of the amplifiers and total phase lag		
	10. determine the rate of change of output voltages in response to the input waveforms for		
	summing amplifiers, integrators and differentiators		

11	Synopsis of unit:		
	"Electronic devices and circuits (Analog)" subject ensures that many semiconductor devices		
	are based on the pn junction and operation and characteristics of the diode are covered. The		
	first step is to learn about semiconductor transistors' operation, including bipolar junction		
	transistor (BJT) and field-effect transistor (FET). DC biasing is used to establish fixed dc		
	values for the transistor currents and voltages called the dc operating point or quiescent point		
	(Q-point) in order to operate as an amplifier. After all, these materials lay the groundwork for		
	the study of amplifiers, and other circuits that require proper biasing.		
12	Topic:		
	1. Introduction to Electronics		
	2. Diode Applications		
	3. Special-Purpose Diodes		
	4. Bipolar Junction Transistors		
	5. Transistor Bias Circuits		
	6. BJT Amplifiers		
	7. The Operational Amplifier		
	8. Basic Op-Amp Circuits		
13	Main references:		
	Electronic Devices, Electron Flow Version, Ninth Edition, Thomas L. Floyd		
14	Additional references:		
	www.pearesonhighered.com		