No.	Information of Strength of Materials				
1	Unit Name:	Strength of Materials			
2	Code:	NE- 2021			
3	Classification:	General Subject			
4	Credit Value:	3			
5	Semester/ Year Offered:	1/2			
6	Pre-requisite:	NA			
7	Mode of Delivery:	Lecture and Problem Solving			
8	Assessment system and breakdown of marks:	: Assignment, Tutorials			
	Assignment/ Home Work	10%			
	Tutorials	20%			
	Q & A	70%			
9	Academic staff teaching unit:	Department of Nuclear Technology			
10	Course outcome of unit:				
	After completion of this course, students will b	e able to			
	- Define the basic concept of centre of g	avity and moment of inertia			
	- Explain about stress, strain and shearing force of materials				
	- Recognize the nature of stresses on the wall				
	- Compute the problems deal with strength of materials				
11	1 Synopsis of unit:				
	The course covers the concepts of stress and strain as well as strength of various materials. This				
	course contains centre of gravity, moment of inertia, direct shear stresses, thin-walled and thick-				
	walled pressure vessels, shearing force and bending moment and various stresses. This course will				
	be able to understand students about the condition of stress and strain, types and effects of loads				
	and stresses concerned with various materials and etc. students recognize stresses deal with				
	pressure vessels and can apply strength of materials in occupational field.				
12	Topic:				
	- Centre of gravity				
	- Moment of inertia				
	- Stresses and strains				
	- Shearing force and bending moment				
	- Direct shear stresses				
	- Biaxial stresses, combined stresses and general state of stresses				
	- Thin-walled pressure vessels				
10	- Thick-walled pressure vessels				
13	Main references:				
	STRENGTH OF MATERIALS: B.K. Sarkar, 2003				
	STRENGTH OF MATERIALS: W.A.Nash, Re	evised 4 th Edition, 2010			
14	Additional references:	the second se			
	STRENGTH OF MATERIALS: L.S.Negi (Principal Guru Nanak Dev Polytechic, Delhi), 6 th				
	Edition, Reprinted 2012				

NE 21021, Strength of Materials

Instructor- Daw Nan Zin Thiri Naung

(2019/2020 Semester I, Lesson Plan)

Time	Learning Outcomes	Topics	Instruction methods	Duration	Assessment
Week 1		Course Introduction			
Week 2	 To explain the gravity and gravitational force To determine the centre of gravity and location of centroid for regular areas 	 Gravity and gravitational force Center of gravity Centroid Location of the centroid Centroids of regular areas Procedures for locating the centroid Problems solving 	 Brainstorming Lecturer by instructor Discussion on lecture Solve the problems 	2 hr 2 hr	 Short Questions Discussion Classwork
Week 3	• To differentiate method of integration to locate the centroid or centre of gravity	 Centre of gravity of regular solids Location of centre of gravity of solids Method of integration to locate the centroid or centre of gravity Problems solving 	 Lecturer by instructor Discussion on lecture Solve the problems 	2 hr 2 hr	 Short Questions Discussion Classwork
Week 4	 To determine the centre of gravity of irregular bodies To solve the problems of centre of gravity 	 Centre of gravity of irregular bodies Centre of gravity of composite sections Problems solving 	 Lecturer by instructor Discussion on lecture Solve the problems 	2 hr 2 hr	 Short Questions Discussion Classwork
Week 5	• To describe the concepts of moment of inertia of a lamina and radius of gyration	 Moment of inertia Moment of inertia of a Lamina Radius of gyration Theorems involving moment of inertia of plane figures Problem solving 	 Brainstorming Lecturer by instructor Discussion on lecture Solve the problems 	2 hr 2 hr	 Short Questions Discussion Classwork

Week 6	 To identify mass and polar moment of inertia and radius To calculate moment of inertia of given figure 	 Moment of inertia of plane laminas Section modulus Mass moment of inertia Polar moment of inertia Mass moment of inertia and radius Problem solving 	 Lecturer by instructor Discussion on lecture Solve the problems 	2 hr 2 hr	 Short Questions Discussion Class work
Week 7	• To explain concepts of stress and strain	 Loads and forces Stress Strain Elasticity and elastic limit Hooke's Law Tutorial I 	 Brainstorming Lecturer by instructor Discussion on lecture Solve the problems 	2 hr 2 hr	 Short Questions Discussion Class work Tutorial I
Week 8	• To realize concepts of stress-strain curve and changes in dimensions and volume	 Stress-strain curve for mild steel Factory of safety Poisson's ratio (1/m) Change in dimensions of a bar Change in volume Problem solving 	 Lecturer by instructor Discussion on lecture Solve the problems 	2 hr 2 hr	 Short Questions Discussion Classwork
Week 9	• To discuss theory of elongation and extension of bars and rod	 Elongation of bars of varying cross-section Elongation of uniformly tapering rod Extension of bar under its own weight Composite bar under tension or compression Temperature stress and strain Problem solving 	 Brainstorming Lecturer by instructor Discussion on lecture Solve the problems 	2 hr 2 hr	 Short Questions Discussion Classwork
Week 10	• To classify the beams and types of loading	 Beam Classification of beams Types of loading Shear force Bending moment Problem solving 	 Brainstorming Lecturer by instructor Discussion on lecture Solve the problems 	2 hr 2 hr	 Short Questions Discussion Classwork

Week 11	• To manipulate the shear force and bending moment	 Sign convention Calculation of shear force at any section 	 Lecturer by instructor Discussion on lecture 	2 hr	 Short Questions Discussion
	C C	 Calculation of bending moment at any section 	➤ Solve the problems	2 hr	Classwork
		Shear force and bending moment diagramsProblem solving			
Week 12	• To compute the concentrated load at cantilever beams	 Cantilever beam with a concentrated load at the freed end Cantilever beam with number of concentrated loads Simply supported beam with a concentrated load at the mid-spam Simply supported beam with a u.d.i over 	 Lecturer by instructor Discussion on lecture Solve the problems 	2 hr 2 hr	 Short Questions Discussion Classwork
		Problem solving			
Week 13	 To apply concepts of various loads and various beams To draw shearing force and bending moment diagrams 	 Simply supported beam of span L which carries over its full span a load varying uniformly from zero at either ends to w N/m at mid-span Beams with oblique loading Overhanging loading Problems solving 	 Lecturer by instructor Discussion on lecture Solve the problems 	2 hr 2 hr	 Short Questions Discussion Classwork
Week 14	• To solve problems of shearing force and bending moment with various beams and various loads	 Problems solving Tutorial II 	 Lecturer by instructor Discussion on lecture Solve the problems 	2 hr 2 hr	 Short Questions Discussion Classwork Tutorial II
Week 15		> Revision			\triangleright