No	Information of Characterization of Materials (2019-2020)		
1	Unit name:	Characterization of Materials	
2	Code:	Met- 51051	
3	Classification:	Engineering subject	
4	Credit value:	3	
5	Semester/ Year Offered:	1/5	
6	Pre-requisite:		
7	Mode of delivery:	Lecture, Tutorial, Assignment	
8	Assessment system and breakdown of		
	marks:		
	Test	30%	
	Mid-term/ final Examination	70%	
9	Academic staff teaching unit:	1	
10	Course outcome of unit:		
	In this course, students will be able to		
	- apply the varieties of microscopic and X-ray spectroscopic techniques.		
	- identify the methodologies and applications various characterization techniques.		
	- use the modern instruments for characterizing materials.		
11	Synopsis of unit:		
	The course describes light microscopy, X-ray	diffraction methods (XRD), transmission electron	
	microscopy (TEM), scanning electron microscopy (SEM) and X-rays fluorescence for elementals		
	analysis (XRF), atomic absorption spectroscopy (AAS), thermal analysis and non-destructive		
	testing techniques. How to characterize and determine chemical compositions & to observe		
	internal structure.		

12	Topic:
	Chapter 1
	Light Microscopy
	Optical Principles
	Image Formation
	Resolution
	Effective Magnification
	Brightness and Contrast
	Depth of Field
	Aberrations
	Instrumentation. Illumination System, Objective Lens and Eveniece
	Steps for Optimum Resolution
	Steps to Improve Depth of Field
	Specimen Preparation: Sectioning, Cutting, Microtomy, Mounting, Grinding and Polishing,
	Etching
	Imaging Modes
	Bright-Field and Dark-Field Imaging
	Phase-Contrast Microscopy
	Polarized-Light Microscopy
	Nomarski Microscopy
	Fluorescence Microscopy
	Confocal Microscopy
	Working Principles
	Three-Dimensional Images
	Chapter 2
	X-Ray Diffraction Methods
	X-Ray Radiation
	Generation of X-Rays
	X-Ray Absorption
	Theoretical Background of Diffraction
	Diffraction Geometry
	Bragg's Law
	Reciprocal Lattice
	Ewald Sphere
	Diffraction Intensity
	Structure Extinction
	X-Ray Diffractometry
	Instrumentation
	Samples and Data Acquisition
	Sample Preparation
	Acquisition and Treatment of Diffraction Data
	Preferential Orientation
	Crystallite Size
	Applications
	Applications Crustal Dhaga Identification

Quantitative Measurement Chapter 3 **Transmission Electron Microscopy** Instrumentation **Electron Sources** Thermionic Emission Gun Field Emission Gun **Electromagnetic Lenses** Specimen Stage Specimen Preparation Pre-thinning **Final Thinning** Electrolytic Thinning Ion Milling Ultramicrotomy Image Modes Mass–Density Contrast **Diffraction Contrast** Phase Contrast Selected-Area Diffraction (SAD) Selected-Area Diffraction Characteristics Single-Crystal Diffraction Identification of Crystal Phases Multicrystal Diffraction **Images of Crystal Defects** Dislocations Chapter 4 **Scanning Electron Microscopy** Instrumentation **Optical Arrangement** Signal Detection Detector Probe Size and Current **Contrast Formation Electron–Specimen Interactions Topographic Contrast Compositional Contrast** Working Distance and Aperture Size Acceleration Voltage and Probe Current Astigmatism **Specimen Preparation** Preparation for Topographic Examination Charging and Its Prevention Preparation for Microcomposition Examination Electron Backscatter Diffraction Applications of EBSD

Environmental SEM Chapter 5 **X-Ray Spectroscopy for Elemental Analysis** Features of Characteristic X-Rays Types of Characteristic X-Rays Selection Rules Comparison of K, L, and M Series X-Ray Fluorescence Spectrometry Wavelength Dispersive Spectroscopy Analyzing Crystal Wavelength Dispersive Spectra Energy Dispersive Spectroscopy Detector **Energy Dispersive Spectra** Advances in Energy Dispersive Spectroscopy XRF Working Atmosphere and Sample Preparation Energy Dispersive Spectroscopy in Electron Microscopes Scanning Modes Qualitative and Quantitative Analysis **Qualitative Analysis Quantitative Analysis** Quantitative Analysis by X-Ray Fluorescence Chapter 6 **Thermal Analysis Common Characteristics** Thermal Events Enthalpy Change Instrumentation **Experimental Parameters** Differential Thermal Analysis and Differential Scanning Calorimetry Working Principles **Differential Thermal Analysis Differential Scanning Calorimetry** Temperature-Modulated Differential Scanning Calorimetry **Experimental Aspects** Sample Requirements **Baseline Determination** Effects of Scanning Rate Measurement of Temperature and Enthalpy Change **Transition Temperatures** Measurement of Enthalpy Change Calibration of Temperature and Enthalpy Change Applications **Determination of Heat Capacity** Determination of Phase Transformation and Phase Diagrams Applications to Polymers

	Thermogravimetry
	Instrumentation
	Experimental Aspects
	Samples
	Atmosphere
	Temperature Calibration
	Heating Rate
	Interpretation of Thermogravimetric Curves
	Types of Curves
	Temperature Determination
	Applications
	Chapter 7
	Atomic Absorption Spectrometry (AAS)
	Introduction
	Basic principle
	Flame AAS
	Atomic Absorption Spectrometry with graphite furnace (GFAA)
	Chapter 8
	Non-destructive testing Methods
14	Main Reference
	- Materials Characterization- An introduction to Microscopic and Spectroscopic Methods,
	Yang Leng, 2 nd edition
15	Additional references:
	- Elements of Physical Metallurgy, Albert G. Guy and John J. HREN, 3 rd Edition
	- Solid State Chemistry and Its Applications