No	Information on subject (2019-2020)	
1	Unit name	Metallurgical Thermodynamic I
2	Code	Met-41031
3	Classification	Engineering subject
4	Credit value	2.5
5	Semester/Year offered	1/4
6	Pre-requisite	Met-32021 Physical chemistry of metals
7	Mode of delivery	Lecture, Tutorial and Assignment
8	Assessment system and breakdown of	
	marks	
	Test	30%
	Mid-term/ final examination	70%
9	Academic staff teaching unit	
10	Course outcome of unit;	
	In this course, students will be able	
	a. to explain thermochemistry and its a	pplication in metallurgy
	b. to define the thermodynamic method	l
	c. to explain the laws of thermodynami	cs
	d. to solve the problems in metallurgica	ll thermodynamics
11	Synopsis of unit;	
	The course covers about the metallum	rgical thermodynamics. This course contains
	the first and second law of thermodynamic	cs (enthalpy, entropy and free energy), the
	Clausis-Clapeyron equation and fugaci	ity, activity and equilibrium constant.
	Thermodynamics and kinetics are important	core subjects in metallurgy.
12	Topic	
	1 The first law of thermodynamics	
	 Introduction 	
	 Heat Content or Enthal 	lpy
	Heat Capacity	
	 Thermochemistry and 	its application in Metallurgy

	 Hess's Law
	 Variation of Enthalpy Change with Temperature
	 Maximum Reaction Temperature: Flame Temperature
2	The second law of thermodynamics: Entropy and Free energy
	 Introduction
	 Entropy
	 Entropy Change for a Reversible Process
	 Entropy Change for an Irreversible Process
	 Entropy Change for a Chemical Reaction
	 Variation of Entropy Change with Temperature
	 Criterion of Spontaneity based on Entropy
	Free Energy
	 Criterion of Spontaneity based on Free Energy
	 Calculation of Free Energy Change
	• Calculation of ΔG° at High Temperature
	 Gibbs Free Energy and Thermodynamics Functions
	 Gibbs-Helmholtz Equation
3	The Clausis-Clapeyron Equation
	 Introduction
	 Application of Clausis-Clapeyron Equation to Phase Change
	 Liquid Vapour (Vaporization) Equilibria
	 Solid-Vapour (Sublimation) Equilibria
	 Solid-Liquid (Fusion) Equilibria
	 Solid-Solid Equilibria
	 Trouton's Rule
4	Fugacity, Activity and Equilibrium constant
	 Introduction
	 Fugacity

	 Activity 		
	 Equilibrium Constant 		
	 Van't Hoff Equation 		
	 Integration of Van't Hoff Equation 		
13	Main reference;		
	Problems in Metallurgical Thermodynamics and Kinetics By G.S. UPADHYAYA B.Sc,		
	M.Sc, Ph.D, F.I.M Department of Metallurgical Engineering, Indian Institute of		
	Technology, Kanpur (India) AND K.R.DUBF B.Sc, M.Sc, Ph.D, G.Eng. M.I.M		
	Department of Metallurgical Engineering, Indian Institute of Technology, Kanpur		
	(India)		
14	Addition Reading Material;		