No.	Information on subject (2019-2020)		
1.	Unit Name:	Introduction to physical metallurgy	
2.	Unit Code:	Met-21023	
3.	Classification:	Engineering Subject	
4.	Credit Value:	3	
5.	Semester/Year Offered:	1/2	
6.	Pre – requisite:		
7.	Mode of Delivery:	Lecture, Tutorial, Practical	
8.	Assessment System and Breakdown of		
	Marks:		
	Tutorial	15%	
	Practical	15%	
	Mid – term/Final Examination	70%	
9.	Academic Staff Teaching Unit:	Demonstrator	
10.	Course outcome of unit:		
	In this course, students will be able to		
	1. classify materials and determine atomic structure of materials.		
	2. identify atomic and ionic arrangements and to determine points, directions and		
	planes in the unit cell and liner density, packing fraction and planar density.		
	3. explain point defects, line defects and surface defects of materials and describe		
	diffusion mechanism and calculate the problems about diffusion.		
11.	Synopsis of unit:		
	The course covers the types of materials, atomic structure and atomic bonding,		
	points, directions and planes in the unit cell, imperfections in the atomic and ionic		
	arrangements, point defects, line defects and surface defects of materials and atom and		
10	ion movements in materials.		
12.	Topic		
	1. Introduction to materials science and engineering		
	 What is materials science and engineering Charification of materials 		
	- Classification of materials		
	- Functional classification of materials		
	- Environmental and other effects		
	- Materials design and selection		
	2 Atomic structure		
	The structure of the stom		
	- The structure of the atom The electronic structure of the stor		
	- The electronic structure of the atom		
	- Atomic boliding	22	
	– binding energy and interatomic space	ng	
	3. Atomic and ionic arrangements		
	 Short-range order versus long-range order 		
	– Amorphous materials		
	– Lattice, basis, unit cells, and crystal structures		
	 Points, directions, and planes in the unit cell 		

	 Interstitial sites 	
	 4. Imperfections in the atomic and ionic arrangements Point defects Dislocations 	
	 5. Atom and ion movements in materials Application of diffusion Stability of atoms and ions Mechanisms for diffusion Activation energy for diffusion Rate of diffusion (Fick's first law) Factors affecting diffusion Composition profile (Fick's second law) Diffusion and materials processing 	
13.	Main references: The Science and Engineering of Materials, Six Edition, Donald R. Askeland	
14.	Additional reference: Materials Science and Engineering An Introduction, Eight Edition, William D. Callister , Jr. David G. Rethwisch	

Lists of Practical

No.	Lab title	Duration
1	Crystallography of unit cell (study on different crystal	5 hrs
	structure systems)	
2	Determination of relationship between atomic radius and	5 hrs
	lattice parameter of S.C, B.C.C and F.C.C of unit cell	
3	Determination and construction of point defects	5 hrs