	Information	Information of every subject	
1	Unit name:	Engineering Mechanic	
2	Code:	ME-21015	
3	Classification:	Engineering subject	
4	Credit value:	2.5	
5	Semester/ Year Offered:	2/2	
6	Pre-requisite:	Branch of physical science	
7	Mode of delivery:	Lecture, Practical	
8	Practical	10%	
	Tutorials	20%	
	Mid-term/ final Examination	70%	
9	Academic staff teaching unit:		
10	Course outcome of unit:		
	Semester I		
	In this course, students will be able		
	(a) To apply the basic principles of Mechanics, scalar and vectors.		
	(c) To construct the free body diagra	am of a particle for equilibrium position.	
	(d) To calculate the moments of a fo	orce, the forces in the member of a truss	
	Semester II		
	In this course, students will be able		
	(e) To apply basic kinematics conce	pts -displacement, velocity and acceleration.	
	(f) To apply basic dynamics concept (g) To apply Newton's laws of moti	s- force, momentum, work and energy.	
	(h) To apply other basic dynamics of	oncept- the work energy principle, Impulse-	
	Momentum principle and the coeff	icient of restitution.	
11	Synopsis of unit:		
	To give a statement of Newton's Laws	s of Motion and Gravitation. This subject is	
	concerned with statics. To show how to a	dd forces and resolve them into components	
	using the Parallelogram Law ,Triangle C	onstruction and Pythagorean theorem. To	
	discuss the concept of the moment of a f	orce and how to calculate it in two and three	
	dimension.		
	This subject is also concerned with dyn	amics which deal with the accelerated motion	
	of a body. This subject of dynamics will	he presented in two parts: kinematics which	
	or a body. This subject of dynamics will be presented in two parts: kinematics, which		
	heats only the geometric aspects of the mo	mon, and kinetics, which is the analysis of the	

	forces causing	the mo	tion. To develop these principles, the dynamics of a particle will
	be discussed f	ïrst, fo	llowed by topics in rigid-body dynamics in two and then three
	dimensions.		
10	T		
12	Торіс:		
	Semester (I)		
	Chapter 1	Gene	eral Principles
	-	1.1	Mechanics
		1.2	Fundamental Concepts
		1.3	Units of Measurement
		1.4	The International System of Units
	Chapter 2	Force	e Vectors
		2.1	Scalars and Vectors
		2.2	Vector Operations
		2.3	Vector Addition of Forces
		2.4	Addition of a System of Coplanar Forces
		2.5	Cartesian Vectors
		2.6	Addition and Subtraction of Cartesian Vectors
		2.7	Position Vectors
		2.8	Force Vector Directed along a Line
		2.9	Dot Product
	Chapter 3	Equil 2 1	Condition for the Equilibrium of a Dorticle
		3.1	The Free Dedu Disgram
		3.2 2.2	Conlanar Force Systems
	Chapter 4	5.5 Fore	Copianar Force Systems
	Chapter 4		Moment of a Force Scalar Formulation
		4.1	Cross Product
		ч.2 ДЗ	Moment of a Force- Vector Formulation
		4.5	Principle of Moments
		4.5	Moment of a Force about a Specified Axis
		4.6	Moment of a Couple
		4.7	Equivalent System
		4.8	Resultants of a Force and Couple System
		4.9	Further Reduction of a Force and Couple System
	Chapter 5	oter 5 Equilibrium of a Rigid Body	
	5.1 Condition for Rigid-Body Equilibrium		Condition for Rigid-Body Equilibrium
			Equilibrium in Two Dimensions
		5.2	Free-Body Diagrams
		5.3	Equations of Equilibrium
		5.4	Two- and Three-Force Members
			Equilibrium in Three Dimensions
		5.6	Equations of Equilibrium
	Chapter 6	Struc	
		0.1	Simple Irusses The Method of Joints
		0.2 6.2	The Wielliou of Johns Zero, Force Members
		0.3	The Method of Sections
		0.4	The Method of Sections

Chapter 8 Friction 8.1 Characteristics of Dry friction Problems Involving Dry friction 8.2 Chapter 9 9.2 Center of Gravity, Center of Mass, and Centroid for a Body 9.3 **Composite Bodies** Semester (II) **Chapter12 Kinematics of a Particle** 12.1 Introduction 12.2 **Rectilinear Kinematics: Continuous Motion Rectilinear Kinematics: Erratic Motion** 12.3 12.4 General Curvilinear Motion 12.5 Curvilinear Motion: Rectangular Components Motion of a Projectile 12.6 Curvilinear Motion: Normal and Tangential Components 12.7 12.8 Curvilinear Motion: Cylindrical Component Absolute Dependent Motion Analysis of Two Particles 12.9 12.10 Relative-Motion Analysis of Two Particles Using Translating Axes **Kinetics of a Particle: Force and Acceleration** Chapter13 13.1 Newton's Laws of Motion 13.2 The Equation of Motion Equation of Motion for a System of Particles 13.3 Equations of Motion: Rectangular Coordinates 13.4 13.5 Equations of Motion: Normal and Tangential Coordinates Equations of Motion: Cylindrical Coordinates 13.6 Chapter14 **Kinetics of a Particle: Work and Energy** 14.1 The Work of a Force 14.2 Principle of Work and Energy Principle of Work and Energy for a System of Particles 14.3 14.4 Power and Efficiency 14.5 **Conservative Forces and Potential Energy** 14.6 Conservation of Energy Chapter15 **Kinetics of a Particle: Impulse and Momentum** Principle of Linear Impulse and Momentum 15.1 15.2 Principle of Linear Impulse and Momentum for a System of Particles Conservation of Linear Momentum for System of Particles 15.3 15.4 Impact 15.5 Angular Momentum Relation Between Moment of a Force a Angular Momentum 15.6 15.7 Angular Impulse and Momentum Principles **Planar Kinematics of a Rigid Body** Chapter 16

16.1 Rigid-Body Motion

16.2 Translation

		16.3	Rotation about a Fixed Axis
		16.4	Absolute Motion Analysis
		16.5	Relative-Motion Analysis: Velocity
		16.6	Instantaneous Center of Zero Velocity
		16.7	Relative-Motion Analysis: Acceleration
		16.8	Relative-Motion Analysis using Rotating Axes
	Chapter 17 Planar Kinetics of a Rigid Body: Force and Acceleration		
		17.1	Moment of Inertia
		17.2	Planar Kinetic Equations of Motion
		17.3	Equations of Motion: Translation
14	Main references:		
	Engineering Mechanic Statics and Dynamics (11thEdition)R.C.HIBBELER		
15	Additional references:		
	Engineering Mechanic Statics and Dynamics (7 th Edition and 13 th Edition)		