No.	Information of every subject						
1	Unit name: Vibration and Control						
2	Code:	ME-51015					
3	Classification:	Engineering Subjects					
4	Credit value:	3					
5	Semester/ Year Offered: 1/2						
6	Pre-requisite: Differential Calculus Dynamic of Machinery						
7	Mode of delivery: Lecture, Tutorial						
8	Assessment system and breakdown of marks:						
	Tutorial (Will be assigned depending on course	20%					
	progress)						
	Mid-term Examination	40%					
	Final Examination	40%					
9	Academic staff teaching unit:						
10	Course outcome of unit:						
	In this course, students will be able						
	Semester I						
	 To be learn fundamental information about the vibration phenomenon To be gained skills of modelling of vibration problems encountered in 						
	application and examining vibration response, establishing relation between real system and physical model						
	 To be formed mathematical model, methods used examining of vibrations and its usage fields 						
	 To find out the solution of mathematical mode results 	el and to be interpreted of its					

	✤ T	To be having general information about definition and finding remedy of the						
	vi	vibration problems encountered in machineries						
11	Synopsis of unit:							
	It is expected from the students that they come out with the following knowledge at the							
	end of thi	end of this course;						
	≻ C	Can classify the system of vibration.						
	≻ U	Understood the parameters and variables of a vibration system.						
	≻ C	Can represent the vibration phenomena as a mathematical model and solve it to						
	oł	otain the response.						
		an analyze the free and force vibrating system according to the degree of						
		eedom.						
		amiliarize students with the use of MATLAB as directed toward vibration						
	pi	roblems.						
	Topics:							
	Chapter							
12	1	Fundamentals of Vibration and Important of the Study of Vibration						
		1.1 Preliminary Remarks						
		1.2 Brief History of the Study of Vibration						
		1.3 Importance of the Study of Vibration						
		1.4 Basic Concepts of Vibration						
		1.5 Classification of Vibration						
		1.6 Vibration Analysis Procedure						
		1.7 Spring Elements						
		1.8 Mass or Inertia Elements						
		1.9 Damping Elments						

	1.10	Harmonic Motion	
	1.11	Harmonic Analysis	
	1.12	Examples using MATLAB	
2	Free Vibration of Single Degree of Freedom		
	2.1	Introduction	
	2.2	Free Vibration of an Undamped Translational System	
	2.3	Free Vibration of an Undamped Torsional System	
	2.4	Response of First Order Systems and Time Constant	
	2.5	Rayleigh's Energy Method	
	2.6	Free Vibration with Viscous Damping	
3	Harmonically Excited Vibration		
	3.1	Introduction	
	3.2	Equation of Motion	
	3.3	Response of an Undamped System Under Harmonic Force	
	3.4	Response of a Damped System Under Harmonic Force	
	3.5	Response of a Damped System Under F(t)	
	3.6	Response of a Damped System Under Harmonic Motion of the Base	
	3.7	Response of a Damped System Under Rotating Unbalance	
4	Vibration Under Forcing Condition		
	4.1	Introduction	
	4.2	Response Under a General Periodic Force	
	4.3	Response Under a Periodic Force of Irregular Form	
	4.4	Response Under a Non-Periodic Force	

		4.5 C	onvolution Integral			
	5	Two Degree of Freedom System				
		5.1 In	troduction			
		5.2 E	quations of Motion for Force Vibration			
		5.3 Fi	ree Vibration Analysis of an Undamped System			
		5.4 T	orsional System			
		5.5 C	oordinate Coupling and Principal Coordinates			
		5.6 Fe	orce Vibration Analysis			
		5.7 Se	emidefinite Systems			
	6	Vibratio	on Control			
		6.1 V	ibration Isolation			
		6.2 V	ibration Isolation System with Rigid Foundation			
		6.3 V	ibration Isolation System with Base Motion			
		6.4 V	ibration Isolation System with Flexible Foundation			
		6.5 V	ibration Absorber			
		6.6 U	ndamped Dynamic Vibration Absorber			
		6.7 D	amped Dynamic Vibration Absorber			
13	Main refe	rences:				
	Mechanic	Mechanical Vibration by Singiresu S. RAO, Fifth edition.				
14	Additiona	l referenc	es:			
	ME-5015, VIBRATION AND CONTROL (Textbook)					
	William T.Thomson, "Theory of Vibration with Applications", Prentice Hall, 1988					
	William Weaver, Jr, "Vibration and Problems in Engineering", John Wiely and SONS, 1990					