No	Information of every subject				
1	Unit name:	Theory of Machines I			
2	Code:	ME-31015			
3	Classification:	Engineering subject			
4	Credit value:	3			
5	Semester/ Year Offered:	1/2			
6	Pre-requisite: Engineering Mechanics (Statics, Dynami				
7	Mode of delivery: Lecture ,Practical				
8	Practical	20%			
	Mid-term/ final Examination	70%			
	Viva	5%			
	Tutorial	5%			
9	Academic staff teaching unit:				
10	Course outcome of unit:				
	Semester (I)				
	a. To use the reference circle to describe the variation in magnitude and direction of displacement, velocity and acceleration for simple harmonic motion.b. To apply the relationship between machines and mechanisms.c. To distinguish kinematic and kinetic motion.d. To draw velocity and acceleration diagram for a mechanisms.				
	Semester (II)				
	 e. To calculate loss of power due to friction in various machines. f. To determine allowable forces, stress, power and torques for flexible drive systems. g. To design gear and gear trains to produce speed or torque. h. To apply basic law of friction to clutches and brakes. 				
11	Synopsis of unit:				
	The subject theory of machines may be defined as that branch of engineering				
	science, which deals with the study of relative motion between the various parts of				
	a machine, and force which act on then. The knowledge of this subject is very				
	essential for an engineer in designing the various parts of a machine.				
12	Topics and Contact Hours:				
	4 Simple Harmonie	c Motion			
	4.1 Introduction				
	4.2 Velocity and Acc	eleration of a Particle Moving with Simple			

Harmonic Motion			
4.3	3 Differential Equation of Simple Harmonic Motion		
4.4	Terms Used in Simple Harmonic Motion		
4.5	Simple Pendu	lum	
4.6	Laws of Simp	le Pendulum	
4.7	Closely-coiled	l Helical Spring	
4.8	Compound Pe	endulum	
4.9	Centre of Perc	cussion	
4.10	Bifilar Susper	ision	
4.11	Trifilar Suspe	nsion (Torsional Pendulum)	
5		Simple Mechanisms	
		5.1 Introduction	
	5.2	Kinematic Link or Element	
	5.3	Types of Links	
	5.4	Structure	
	5.5	Difference between a Machine and a Structure	
	5.6	Types of Constrained Motions	
	5.7	Kinematic Pair	
5.8	Class	ification of Kinematic Pairs	
5.9	9 Kinematic Chain		
5.10	Туре	s of Joints in a Chain	
	5.11	Mechanism	
	5.12	Number of Degree of Freedom for Plane Mechanisms	
	5.13	Application of Kutzbach Criterion to Plane Mechanisms	
	5.14	Grubler's Criterion for Plane Mechanisms	
	5.15	Inversion of Mechnism	
	5.16	Types of Kinematic Chains	
	5.17	Four Bar Chain or Quadirc Cycle Chain	
	5.18	Inversions of Four Bar Chain	
	5.19	Single Slider Crank Chain	
	5.20	Inversions of Single Slider Crank Chain	
	5.21	Double Slider Crank Chain	

	5.22	Inversions of Double Slider Crank Chain		
6	Velocity in Mechanisms (Instantaneous Centre Method)			
	6.1	Introduction		
	6.2	Space and Body Centrodes		
	6.3	Methods for Determining the Velocity of a Point on a Link		
	6.4	Velocity of a Point on a Link by Instantaneous Centre Metho		
	6.5	Properties of the Instantaneous Centre		
	6.6	Number of Instantaneous Centre in a Mechanism		
	6.7	Types of Instantaneous Centres		
	6.8	Location of Instantaneous Centres		
	6.9	Aronhold Kennedy (or Three Cenres -in -Line) Theorem		
	6.10	Method of Locating Instantaneous Centre in a Mechanism		
7	Veloc	eity in Mechanisms (Relative Velocity Method)		
	7.1	Introduction		
	7.2	Relative Velocity of Two Bodies Moving in Straights Lines		
	7.3	Motion of a Link		
	7.4	Velocity of a Point on a Link by Relative Velocity Method		
	7.5	Velocities in a Slider Crank Mechanism		
	7.6	Rubbing Velocity at a Point Joint		
	7.7	Forces Acting in a Mechanism		
	7.8	Mechanical Advantage		
8	Accel	eration in Mechanisms		
	8.1	Introduction		
	8.2	Acceleration Diagram for a Link		
	8.3	Acceleration of a Point on a Link		
	8.4	Acceleration in the Slider Crank Mechanism		
	8.5	Coriolis Component of Acceleration		
10		Friction		
		10.1 Introduction		

		10.2	Types of Friction
		10.3	Friction Between Unlubricated Surfaces
		10.4	Friction Between Lubricated Surfaces
		10.5	Limiting Friction
		10.6	Laws of Static Friction
		10.8	Laws of Solid Friction
		10.9	Laws of Fluid Friction
		10.10	Coefficient of Friction
		10.11	Limiting Angle of Friction
		10.12	Angle of Repose
		10.14	Friction of a Body Lying on a Rough Inclined Plane
		10.15	Efficiency of Inclined Plane
		10.16	Screw Friction
		10.17	Screw Jack
		10.18	Torque Required of Lift the Load by a Screw Jack
		10.20	Efficiency of the Screw Jack
		10.21	Maximum Efficiency of a Screw Jack
		10.22	Over Hauling and Self Locking Screws
		10.23	Efficiency of Self Locking Screws
		10.24	Friction of a V-thread
		10.25	Friction in Journal Bearing-Friction Circle
		10.26	Fiction of Pivot and Collar Bearing
		10.27	Flat Pivot Bearing
		10.28	Conical Pivot Bearing
		10.29	Trapezoidal or Truncated Conical Pivot Bearing
		10.30	Flat Collar Bearing
		10.31	Friction Clutches
		10.32	Single Disc or Plate Clutch
		10.33	Multiple Disc Clutch
		10.34	Cone Clutch
		10.35	Centrifugal Clutches
11		Belt, Rope and Chain Drives	
	11.1	Introdu	uction

11.2	Selection of a Belt Drive
11.3	Types of Belt Drives
11.4	Types of Belt
11.5	Material used for Belts
11.6	Types of Flat Belt Drives
11.7	Velocity Ratio of Belt Drive
11.8	Velocity Ratio of a Compound Belt Drive
11.9	Slip of Belt
11.10	Creep of Belt
11.11	Length of an Open Belt Drive
11.12	Length of Cross Belt Drive
11.13	Power Transmitted by a Belt
11.14	Ratio of Driving Tension for Flat Belt Drive
11.15	Determination of Angle of Contact
11.16	Centrifugal Tension
11.17	Maximum Tension in the Belt
11.18	Condition for the Transmission of Maximum Power
11.23	Rope Drive
11.24	Fiber Ropes
11.26	Sheave for Fiber Ropes
11.27	Wire Ropes
11.28	Ratio of Driving Tension for Rope Drive
11.29	Chain Drives
11.30	Advantages and Disadvantages of Chain Drive Over Belt or
	Rope Drive
11.31	Terms Used in Chain Drive
11.32	Relationship between Pitch and Pitch Circle Diameter
11.33	Relation Between Chain Speed and Angular Velocity of
	Sprocket
11.34	Kinematic of Chain Drive
11.35	Classification of Chains
11.36	Hoisting and Hauling Chains
11.37	Conveyor Chains

	11.38	Power Transmitting Chains
	11.39	Length of Chains
12		Toothed Gearing
	12.1	Introduction
	12.2	Friction Wheel
	12.3	Advantage and Disadvantage of Gear Drive
	12.4	Classification of Toothed Wheels
	12.5	Terms Used in Gears
	12.6	Gear Materials
	12.7	Law of Gearing
	12.8	Velocity of Sliding of Teeth
	12.9	Forms of Teeth
	12.10	Cycloidal Teeth
	12.11	Involute Teeth
	12.12	Effect of Altering the Centre Distance
	12.13	Comparison Between Involute and Cycloidal Gears
	12.14	Systems of Gear Teeth
	12.15	Standard Proportions of Gear Systems
	12.16	Length of Path of Contact
	12.17	Length of Arc of Contact
	12.18	Contact Ratio
	12.19	Interference in Involute Gears
	12.20	Minimum Number of Teeth on the Pinion
	12.21	Minimum Number of Teeth on the Wheel
	12.22	Minimum Number of Teeth on a Pinion for Involute Rack in
		Order to Avoid Interference
	12.23	Helical Gears
	12.24	Spiral Gears
	12.25	Centre Distance For a Pair of Spiral Gears
	12.26	Efficiency of Spiral Gears
13		Gear Trains
	13.1	Introduction

	13.2	Types of Gear Train
	13.3	Simple Gear Train
	13.4	Compound Gear Train
	13.5	Design of Spur Gear
	13.6	Reverted Gear Train
	13.7	Epicyclic Gear Train
	13.8	Velocity Ratio of Epicyclic Gear Train
	13.9	Compound Epicyclic Gear Train(Sun and Planet Wheel)
	13.10	Epicyclic Gear Train With Bevel Gears
	13.11	Torques in Epicyclic Gear Trains
19	Brake	es and Dynamometers
	19.1	Introduction
	19.2	Materials for Brake Lining
	19.3	Types of Brakes
	19.4	Single Block or Shoe Brake
	19.5	Pivoted Block or Shoe Brake
	19.6	Double Block or Shoe Brake
	19.7	Simple Band Brake
	19.8	Differential Band Brake
	19.9	Band and Block Brake
	19.10	Internal Expanding Brake
	19.11	Braking of a Vehicle
	19.12	Dynamometer
	19.13	Types of Dynamometers
	19.14	Classification of Absorption Dynamometers
	19.15	Prony Brake Dynamometer
	19.16	Rope Brake Dynamometer
	19.17	Classification of Transmission Dynamometers
	19.18	Epicyclic-train Dynamometers
	19.19	Belt Transmission Dynamometer-Froude or Throneycraft
		Transmission Dynamometer
	19.20	Torsion Dynamometer

	19.21 Bevis Gibson Flash Light Torsion Dynamometer			
14	Main references:			
	"Theory of Machines"by R.S.Khurmi, J.K.Gupta			
15	Additional references:			
	Theory of Machines(Third Edition) S S RATTAN			