No	Course Information (2019-2020)		
1	Unit name:	Computer Communication	
2	Code:	EcE- 41002	
3	Classification:	Engineering subject	
4	Credit value:	3(2-1-1)	
5	Semester/ Year Offered:	1/4	
6	Pre-requisite:	Communication Principles, Analog and Digital	
		Communication	
7	Mode of delivery:	Lecture, Tutorial, Practical	
8	Assessment system and breakdown		
	of marks:		
	Practical	20%	
	Tutorial	10%	
	Mid-term/ final Examination	70%	
9	Academic staff teaching unit:		
10	Course outcome of unit:		
	After this course, students will be able		
	1. To identify the useful concepts of data communications		
	2. To describe the principles of data communications		
	3. To apply appropriate principles and techniques to solve problems in data		
	communications		
	4. To identify the useful concepts of computer communications		
	5. To describe the principles of computer communications		
	6. To apply appropriate principles and techniques to solve problems in computer		
	7 To perform modulation and multiplexing using SystemView and simulate		
	networks using packet tracer s	oftware	
11	Synopsis of unit:		
	The course includes types	of transmission media and signal encoding	
	techniques. This course explains the	fundamental techniques common to all data link	
	control protocols, including flow con	trol, error control and the most commonly used	
	protocol, HDLC. This course describes the three most common types of multiplexing		
	techniques. The course is to apply the switching techniques by the collective behavior		

of the set of switches that make up a network. This course discusses the common routing algorithms used both in switched data networks, such as frame relay and ATM, and in the Internet. This course explains the important design issues related to cellular wireless networks. This course provides the topologies, transmission media, and MAC protocols of the most important LAN systems in current use and an overview wireless LAN technology and applications.

Chapter	Title
4	Transmission Media
	4.1 Guided Transmission Media
	4.2 Wireless Transmission
	4.3 Wireless Propagation
	4.4 Line-of-Sight Transmission
	4.5 Recommended Reading and Web Sites
	4.6 Key Terms, Review Questions, and Problems
5	Signal Encoding Techniques
-	5.1 Digital Data. Digital Signals
	5.2 Digital Data, Analog Signals
	5.3 Analog Data, Digital Signals
	5.4 Analog Data, Analog Signals
	5.5 Recommended Reading
	5.6 Key Terms, Review Questions, and Problems
7	Data Link Control Protocols
	7.1 Flow Control
	7.2 Error Control
	7.3 High-Level Data Link Control (HDLC)
	7.4 Recommended Reading
	7.5 Key Terms, Review Questions, and Problems
8	Multiplexing
	8.1 Frequency-Division Multiplexing

	8.2 Synchronous Time-Division Multiplexing
	8.3 Statistical Time-Division Multiplexing
	8.4 Asymmetric Digital Subscriber Line
	8.5 xDSL
	8.6 Recommended Reading and Web Sites
	8.7 Key Terms, Review Questions, and Problems
10	Circuit Switching and Packet Switching
	10.1 Switched Communications Networks
	10.2 Circuit Switching Networks
	10.3 Circuit Switching Concepts
	10.4 Softswitch Architecture
	10.5 Packet-Switching Principles
	10.6 X.25
	10.7 Frame Relay
	10.8 Recommended Reading and Web Sites
	10.9 Key Terms, Review Questions, and Problems
12	Routing in Switched Networks
	12.1 Routing in Packet-Switching Networks
	12.2 Examples: Routing in ARPANET
	12.3 Least-Cost Algorithms
	12.4 Recommended Reading
	12.5 Key Terms, Review Questions, and Problems
14	Cellular Wireless Networks
	14.1 Principles of Cellular Networks
	14.2 First Generation Analog
	14.3 Second Generation CDMA
	14.4 Third Generation Systems
	14.5 Recommended Reading and Web Sites
	14.6 Key Terms, Review Questions, and Problems

	16	High-Speed LANs
		16.1 The Emergence of High-Speed LANs
		16.2 Ethernet
		16.3 Fibre Channel
		16.4 Recommended Reading and Web Sites
		16.5 Key Terms, Review Questions, and Problems
	17	Wireless LANs
		17.1 Overview
		17.2 Wireless LAN Technology
		17.3 IEEE 802.11 Architecture and Services
		17.4 IEEE 802.11 Medium Access Control
		17.5 IEEE 802.11Physical Layer
		17.6 IEEE 802.11 Security Considerations
		17.7 Recommended Reading and Web Sites
		17.8 Key Terms, Review Questions, and Problems
14	Main reference	es:
	Data and Com	puter Communications, Eight Edition, William Stallings, Upper Saddle
	River, New Jer	rsey 07458.
	Wireless Local	Area Networks, Bing, B., New York: Wiley, 2002
	IP Routing Pro	tocols: RIP, OSPF, BGP, PNNI & Cisco Routing Protocols, Black, U.
	Upper Saddle I	River, NJ: Prentice Hall, 2000.
15	Additional refe	erences:
	https://store.els	sevier.com/Computer-organization-and-design/David.Patter/isbn-
	<u>978008050257</u>	1
	https://books.google.com.mm/books?	

No	Course Information			
1	Unit name:	Computer Communication I		
2	Code:	EcE- 41002		
3	Classification:	Engineering subject		
4	Credit value:	3(2-1-1)		
5	Semester/ Year Offered:	1/4		
6	Pre-requisite: Communication Principles, Analog and Dig			
		Communication		
7	Mode of delivery:	Lecture, Tutorial, Practical		
8	Assessment system and breakdown			
	of marks:			
	Practical	20%		
	Tutorial	10%		
	Mid-term/ final Examination	70%		
9	Academic staff teaching unit:			
10	Course outcome of unit:			
	After this course, students will be able			
	1. To identify the useful concepts of data communications			
	2. To describe the principles of data communications			
	3. To apply appropriate principle and techniques to solve problems in data			
	communications			
	4. To perform modulation and multiplexing using SystemView software			
11	Synopsis of unit:			
	The course includes types of transmission media and signal encoding			
	techniques. This course explains the fundamental techniques common to all data link			
	control protocols, including flow control, error control and the most commonly used			
	protocol, HDLC. This course describes the three most common types of multiplexing			
	techniques.			
	Topic:			
	Chapter Title			
	4 Transmission Media			

		4.1 Guided Transmission Media	
		4.2 Wireless Transmission	
		4.3 Wireless Propagation	
		4.4 Line-of-Sight Transmission	
		4.5 Recommended Reading and Web Sites	
		4.6 Key Terms, Review Questions, and Problems	
	5	Signal Encoding Techniques	
		5.1 Digital Data, Digital Signals	
		5.2 Digital Data, Analog Signals	
		5.3 Analog Data, Digital Signals	
		5.4 Analog Data, Analog Signals	
		5.5 Recommended Reading	
		5.6 Key Terms, Review Questions, and Problems	
	7	Data Link Control Protocols	
		7.1 Flow Control	
		7.2 Error Control	
		7.3 High-Level Data Link Control (HDLC)	
		7.4 Recommended Reading	
		7.5 Key Terms, Review Questions, and Problems	
	8	Multiplexing	
		8.1 Frequency-Division Multiplexing	
		8.2 Synchronous Time-Division Multiplexing	
		8.3 Statistical Time-Division Multiplexing	
		8.4 Asymmetric Digital Subscriber Line	
		8.5 xDSL	
		8.6 Recommended Reading and Web Sites	
		8.7 Key Terms, Review Questions, and Problems	
14	Main referen	nces:	
	Data and Cor	nputer Communications, Eight Edition, William Stallings, Upper Saddle	
	River, New Jersey 07458.		

	Wireless Local Area Networks, Bing, B., New York: Wiley, 2002			
	IP Routing Protocols: RIP, OSPF, BGP, PNNI & Cisco Routing Protocols, Black, U.			
	Upper Saddle River, NJ: Prentice Hall, 2000.			
15	Additional references:			
	https://store.elsevier.com/Computer-organization-and-design/David.Patter/isbn-			
	<u>9780080502571</u>			
	https://books.google.com.mm/books?			

Lab	Activity			
1	Experiment I: Amplitude Modulation			
	Objectives:			
	To generate the amplitude modulated signal (AM wave)			
	Equipment Required:			
	 Computer, SystemView software 			
2	Experiment II: Frequency Modulation			
	Objectives:			
	To generate frequency modulated signal			
	Equipment Required:			
	 Computer, SystemView software 			
3	Experiment III: Amplitude Shift Keying (ASK)			
	Objectives:			
	To generate ASK signal			
	Equipment Required:			
	 Computer, SystemView software 			
4	Experiment IV: Frequency Shift Keying (FSK)			
	Objectives:			
	To generate FSK signal			
	Equipment Required:			
	 Computer, SystemView software 			
5	Experiment V: Time Division Multiplexing			
	Objectives:			
	To perform the Time Division Multiplexing			
	Equipment Required:			
	 Computer, SystemView software 			

Information on Lab Practical (Computer Communication I) 2019-2020

Lab	Activity		
1	Experiment VI: Configuration of a LAN		
	Objectives:		
	To connect a wired LAN according to a given topology		
	To test and verify configuration using packet tracer software		
	Equipment Required:		
	Computers, switches, twisted pair cables (UTP), Packet tracer software		
2	Experiment VII: Configuration of Wired and Wireless network		
	Objectives:		
	To be able to configure wired and wireless network		
	Equipment Required:		
	> Computers, switch, wireless router, wireless devices, network cables,		
	Packet tracer software		
3	Experiment VIII: Configuration of VLAN		
	Objectives:		
	To install and configure VLAN network		
	Equipment Required:		
	Computers, Network cables (UTP), Switches, Packet tracer software		
4	Experiment IX: Configuration of DHCP Service for Different Networks		
	Objectives:		
	To assign IP addresses using DHCP		
	Equipment Required:		
	 Computers, Switches, Router, Network cables, Packet tracer software 		
5	Experiment X: Configuration of a Routed Network		
	Objectives:		
	To install and configure a routed network		
	Equipment Required:		
	> Computers, Network cables (UTP), Switches, Router, Packet tracer		
	software		

Information on Lab Practical (Computer Communication II) 2019-2020

No	Course Information (2019-2020)		
1	Unit name:	Modern Control System	
2	Code:	EcE – 41003	
3	Classification:	Engineering subject	
4	Credit value:	3 (2-1-1)	
5	Semester/ Year Offered:	1/4	
6	Pre-requisite:	Fundamental of Electronic Circuits, Electronic	
		Engineering Circuits, Microelectronics, Digital	
		Electronics, Modeling and Control, Integrated	
		Electronics	
7	Mode of delivery:	Lecture, Practical, tutorial	
8	Assessment system and breakdown	of marks:	
	Tutorial	10%	
	Practical	20%	
	Mid-term/ final Examination	70%	
9	Academic staff teaching unit:	Electronic Engineering	
10	Course outcome of unit:		
	In this course students will be able		
	> To identify powerful basic concepts of modern control system		
	> To design controllers to meet desired specifications using root locus method,		
	frequency response method		
	> To simulate performance of feedback control system by using MATLAB and		
	simulation of PID control by using Simulink software		
11	Synopsis of unit:		
	The course covers the techniques of analysis of linear control system and		
	control design. The course introduces students to apply the root locus method. In		
	addition, the locus of roots in the s-plane can be determined by a graphical method,		
	the roots of the characteristics equation move around the s-plane by changing one		
	parameter. Frequency response method, the polar plot of the frequency response of a		
	system, stability in the frequency	domain, stability considerations using Nyquist	
	diagram, design using compensation networks and optimization, the bode diagram of		
	a transfer function, the design of feedback control systems, and the design of state		

	variable feedback systems will be learned.		
	Topic:		
	Chapter	Title	
	7. The Root locus Method		
		7.1	Introduction
		7.2	The Root Locus Concept
		7.3	The Root Locus Procedure
		7.4	Parameter design by the Root locus Method
		7.5	Sensitivity and the Root locus
		7.6	PID Controllers
		7.7	Laser Manipulator Control System
		7.8	The Design of a Robot Control System
			7.8.1 The Root locus Using MATLAB
		7.9	Disk Drive Read System
		7.10	Summary
	8. Free	quency R	esponse Methods
		8.1	Introduction
		8.2	Frequency Response Plot
		8.3	An Example of Drawing the Bode Diagram
		8.4	Frequency Response Measurements
		8.5	Performance Specifications in the Frequency Domain
		8.6	Log Magnitude and Phase Diagram
		8.7	Engraving Machine Control System
		8.8	Frequency response Methods using MATLAB
		8.9	Disk Drive read System
		8.10	Summary
14	Main refere	nces:	
	Modern Control Systems, 12 th Edition, Richard C. Dorf, Robert H. Bishop		
15	Additional	references	3:
	Note by Modern Control Systems, 11 st Edition, Richard C. Dorf, Robert H. Bishop,		
	Prentice-Ha	ıll, Upper	Saddle,
	(http://www.Mypearsonstore.com>bookstore)		
	Modern Control Engineering,5 th edition 2010, Ogata, Katsuhiko, by Prentice-Hall, Inc		

Lab	Activities		
	Experiment I: The Root Locus using Control Design Software		
1	Objectives:		
	• To design controllers to meet desired specifications using root locus method,		
	frequency response method		
	• To simulate performance of feedback control system and simulation of PID		
	• To simulate performance of recuback control system and simulation of The		
	control by using MATLAB/Simulink software		
	Equipment required:		
	 MATLAB software, Personal computer 		
2			
	Experiment II: PID Control System for a DC Motor		
	Objectives:		
	• To simulate performance of feedback control system and simulation of PID		
	control by using MATLAB/Simulink software		
	Fauinment required:		
	MATLAB software, Personal computer		
3			
	Experiment III: Polar Plot by using MAILAB		
	Objectives:		
	• To design controllers to meet desired specifications using root locus method,		
	frequency response method		
	• To simulate performance of feedback control system and simulation of PID		
	control by using MATLAB/Simulink software		
	Equipment required:		
	MATLAB software, Personal computer		

Information on Lab Practical (EcE-41003 Modern Control System)

4	Experiment IV: Stability analysis with Polar Plot using MATLAB						
	Objectives:						
	 To design controllers to meet desired specifications using root locus method, frequency response method To simulate performance of feedback control system and simulation of PID control by using MATLAB/Simulink software 						
	Equipment required:						
	MATLAB Software, Personal computer						
5	Experiment V: Stability analysis with bode diagram by using MATLAB						
	Objectives:						
	• To design controllers to meet desired specifications using root locus method, frequency response method						
	• To simulate performance of feedback control system and simulation of PID						
	control by using MATLAB/Simulink software						
	Equipment required:						
	MATLAB software, Personal computer						

No	Course Information (2019-2020)				
1	Unit name:	Digital Design with HDL			
2	Code:	EcE 41021			
3	Classification:	Engineering subject			
4	Credit value:	3			
5	Semester/ Year Offered:	1/4			
6	Pre-requisite:	EcE 21021 & 22021Digital ElectronicEcE 21014 & 22014TechnicalProgrammingTechnical			
7	Mode of delivery:	Presentation, computer application			
8	Assessment system and breakdown	Tutorial, Lab report			
	of marks:				
	Assignment / Tutorial	10%			
	Lab Report	20 %			
	Exam Q & A	70%			
9	Academic staff teaching unit:	Department of Electronic Engineering			
10	Course outcome of unit:				
	After completion of this course, students will be able to				
	1. Describe the configuration of logic circuits, the design process for digital hardware implementation and implementation technology for CPLD and FPGA				
11	 Examine the various logic circuit problems and the number representation problems (by applying the Boolean Algebra, Karnaugh Map and signed number and unsigned number representation) Design the digital circuits by using logic gates or blocks or VHDL code Investigate VHDL code and operations of digital circuits using Quartus II software and DE2-115 FPGA Board and analyze the results with the digital waveforms 				
11	Synopsis of unit:				
	This course provides a syste	ematic introduction to the topic of VHDL			
	programming for designing embedd	led digital system .It emphasizes the basic			
	ideas of design concepts of digit	al hardware and the practical aspects of			
	implementing technology for CPLI	D and FPGA devices. It also presents the			
	optimized implementation of logic	circuit, arithmetic circuit and combinational			
	circuit, synchronize and asynchroniz	e circuit using VHDL code. Digital systems			
	are also designed by using building blocks and clock synchronization. In addition				
	, this course includes the data flow Design Concepts, Introduction to Logic				

	Circuit, Implementation Technology, Optimized Implementation of Logic						
	Function, Number Representation and Arithmetic Circuits, Combinational -						
	Circuit Building Blocks, Flip-Flops, Registers, Counters, Simple Processors,						
	Synchronous and Asynchronous Sequential Circuits and Digital System Design.						
12	Topic:						
	Chapter 1 Design Concepts						
	1.1 Digital Hardware						
	1.2 The Design Process						
	1.3 Design of Digital Hardware						
	1.4 Logic Circuit Design in This Book						
	1.5 Theory and Practice						
	1.6 Binary Numbers						
	Chapter 2 Introduction to Logic Circuits						
	2.1 Variables and Functions						
	2.2 Inversion						
	2.3 Truth Tables						
	2.4 Logic Gates and Networks						
	2.5 Boolean Algebra						
	2.6 Synthesis Using AND, OR, and NOT Gates						
	2.7 NANDand NOR Logic Networks						
	2.8 Design Examples						
	2.9 Introduction to CADTools						
	2.10 Introduction to VHDL						
	Chapter 3 Implementation Technology						
	3.1 Transistor Switches						
	3.2 NMOS Logic Gates						
	3.3 CMOS Logic Gates						
	3.4 Negative Logic System						
	3.5 Standard Chips						
	3.6 Programmable Logic Devices						
	3.7 Custom Chips, Standard Cells, and Gate Arrays						
	3.8 Practical Aspects						
	3.9 Transmission Gates						

3.10 Implementation Details for SPLDs, CPLDs, and FPGAs

Chapter 4 Optimized Implementation of Logic Functions

- 4.1 Karnaugh Map
- 4.2 Strategy for Minimization
- 4.3 Minimization of Product-of-Sums Forms
- 4.4 Incompletely Specified Functions
- 4.5 Multiple-Output Circuits
- 4.6 Multilevel Synthesis
- 4.7 Analysis of Multilevel Circuits
- 4.8 Cubical Representation
- 4.9 A Tabular Method for Minimization
- 4.10 A Cubical Technique for Minimization
- 4.11 Practical Considerations
- 4.12 Examples of Circuits Synthesized from VHDL Code

Chapter 5 Number Representation and Arithmetic Circuits

- 5.1 Number Representations in Digital
- 5.2 Addition of Unsigned Numbers
- 5.3 Signed Numbers
- 5.4 Fast
- 5.5 Design of Arithmetic Circuits Using CAD Tools
- 5.6 Multiplication
- 5.9 Examples of Solved Problems Problems

Chapter 6 Combinational-Circuit Building Blocks

- 6.1 Multiplexers
- 6.2 Decoders
- 6.3 Encoders
- 6.4 Code Converters
- 6.5 Arithmetic Comparison Circuits
- 6.6 VHDL for Combinational Circuits
- 6.7 Concluding Remarks
- 6.8 Examples of Solved Problems

14	Main reference:					
	1. VHDL Programming by Example, Douglas L. Perry, 4 Edition					
	2. Fundamentals of Digital Logic with VHDL Design					
	3. http://www.fpga4students.com					
15	Additional references:					
15	Additional feferences.					
	1. Digital System Design using VHDL,					
	2. http://www.freebookcentre.net/electronics-ebooks-download/VHDL-					
	Language-Guide.html					

Information on Practical (Digital Design with HDL)

٦

Lab	Activity					
	Topic: Logic Gates					
1	Objectives:					
	i. To apply the logic gate operations					
	ii. To design the VHDL codes for logic gates					
	Resources:					
	 i. Quartus II Software ii. DE2-115 or DE1 FPGA Education and Development Kit iii. Personal Computer 					
	Topic: Lighting Control System					
2	Objectives:					
	i. To design the lighting control system					
	ii. To design of the VHDL codes					
	iii. To analyze the operation of this system with timing diagram					
	Resources: i. Quartus II Software ii. DE2-115 or DE1 FPGA Education and Development Kit iii. Personal Computer					
	Topic: Four Inputs Control System					
	Objectives:					
2	i. To design the control system with various inputs					
5	ii. To design the VHDL code for this control system					
	iii. To analyze the system operation with timing diagram					
	Resources:					
	i. Quartus II Software					
	ii. DE2-115 of DE1 FPGA Education and Development Kit iii. Personal Computer					

	Topic: Half Adder				
	Objectives:				
4	i. To test the operation of half adder logic circuit				
	ii. To design the VHDL code for half adder circuit				
	iii. To analyze the operation of the half adder circuit				
Resources:					
	i. Quartus II Software				
	ii. DE2-115 FPGA or DE1 Education and Development Kitiii. Personal Computer				
Topic: Full Adder					
	Objectives:				
5	i. To test the operation of full adder logic circuit				
5	ii. To design the VHDL code for full adder circuit				
	iii. To analyze the operation of the full adder circuit				
	Resources:				
	iv. Quartus II Software				
	v. DE2-115 or DE1 FPGA Education and Development Kit				

Approved By

Prepared By Dr. San San Naing Lecturer Department of Electronic Engineering

No	Course Information (2019-2020)					
1	Unit name: Computer Science					
2	Code:	EcE-41024				
3	Classification:	Engineering subject				
4	Credit value:	3(2-0-2)				
5	Semester/ Year Offered: 1/4					
6	Pre-requisite:	NA				
7	Mode of delivery:	Lecture, Tutorial, Practical				
8	Assessment system and	Practical, Tutorial				
	breakdown of marks:					
	Practical	20%				
	Tutorial	10%				
	Mid-term/ final Examination	70%				
9	Academic staff teaching unit:	Department of Electronic Engineering				
10	Course outcome of unit:					
	After this course, students will be able					
	CO1. To explain the structure of the computer system.					
	CO2. To write the programs using decision making and looping statements,					
	functions, arrays, strings, pointers and file with C programming languages					
	CO3. To write the C programs using simple class, arrays, overloading operators,					
	drives class, pointers, friend functions and file in OOP programming					
	languages					
	CO4. To write the C programs using Turbo C++ software					
	Synopsis of unit:					
	The course introduces studen	ts to the study of computer system and programming				
	language. Course covers the	various structures and statements in the programming				
	language. The course is desi	gned to familiarize the student with C programming				
	language. Computer Science i	s a comprehensive course in electrical engineering and				
	can be applied in the field of i	ndustrial control, communication and any other various				
	applications.					
	Topic:					
	Chapter Title					
	1. Computer Scie	nce				

	1.1	Computer in Your World
	1.2	The Central Processing Unit (CPU)
	1.3	Data Representation
	1.4	Input and Output
	1.5	Secondary Storage and File Organization
1.	Logic	Description in Pseudo Code
	1.1	Introduction
	1.2	Problem Solving and the Computer
	1.3	Pseudo-code in Use
	1.4	Symbols of Flowchart
	1.5	Type of Data
	1.6	Operators
2.	Contr	ol Structures
	2.1	Control Structures
	2.2	Sequence Logic
	2.3	Selection Logic
	2.4	Iteration Logic
3.	Sub-A	lgorithm
	3.1	Introduction
	3.2	Function Sub-Algorithm
	3.3	Procedure Sub-Algorithm
4.	Introd	luction to Turbo C Programming
	4.1	What is computer Programming
	4.2	Starting Turbo C
	4.3	Turbo Editor Commands
5.	Eleme	entary C
	5.1	Program Layout
	5.2	Data Types
	5.3	Operators
	5.4	Name
6.	Standa	ard Header File and their Functions
	6.1	Basic I/O Header File
	6.2	Standard I/O Header File

	6.3	Console I/O Header File
	6.4	Standard Library Header File
	6.5	Character Type Header File
	6.6	Mathematical Header File
7.	Condi	itional Branching Statements
	7.1	Types of Conditional Branching Statements
	7.2	The 'if ' Statement
	7.3	The "if-else " Statements
	7.4	The "if-else-if " Statements
	7.5	The "switch" Statements
	7.6	Multiple Conditions
8.	Iterat	ion (looping) Statements
	8.1	Types of Iteration (looping) Statements
	8.2	For Loop
	8.3	While Loop
	8.4	Do - While Loop
	8.5	Nested Loop
	8.6	Existing from loops
9.	Funct	ions
	9.1	Introduction
	9.2	Function Declarations
	9.3	Function Definitions
	9.4	Scope
	9.5	Reference
10.	Array	rs, Pointer and String
	10.1	Array
	10.2	Pointer
	10.3	Dynamics Arrays
	10.4	Sorting
	10.5	Searching
11.	Form	at File
	1.1	File Declaration
	1.2	File Opening

	1.3	Writing to the File
	1.4	Reading from the File
	1.5	File Closing
	1.6	Format File Creating
	1.7	Accessing File
1.	Introd	luction
	1.1	Advantages of OOP
	1.2	Software and Hardware Requirements
2.	Objec	ts and Classes
	2.1	A Simple Class
	2.2	Constructors and Destructors
3.	Array	s and Strings
	3.1	Arrays as Class Member Data
	3.2	Arrays of Objects
	3.3	Strings
	3.4	Arrays of Strings
4.	Opera	tor Overloading and Data Type Conversion
	4.1	Overloading Unary Operators
	4.2	Overloading Binary Operators
	4.3	Data Type Conversion
5.	Inheri	itance
	5.1	Drives Class Constructors
	5.2	Overriding Member Functions
	5.3	Class Hierarchies
6.	Pointe	ers
	6.1	Pointers to Objects
	6.2	An Array of Pointers to Objects
	6.3	Linked List using Pointers
	6.4	Pointers to Pointers
7.	Virtua	al and Friend functions
	7.1	Virtual Functions
	7.2	Pure Virtual Functions
	7.3	Friend Functions

	7.4 Friend Classes			
	8. File and Streams			
	8.1 Object Input / Output			
14	Main references:			
	Programming and problem solving Using C,instructional software research and			
	development(ISRD Group), Application Programming in ANSI C, third edition,			
	Richard Johnsonbaugh & Martin Kalin at library.			
15	Additional references:			
	http:// www.cms.montgomery college .edu//computing,			
	http://www.web.cerritos.edu//cis			
	https://www.cs.auckland.ac.nz//L12.pdf,https://www.universityefcalicut.info//Bsc			
	<u>C.Science.pdf</u>			

1 Topic : Conditional Branching Statements Outcomes: ➤ To write the C program using conditional branching statements Resources: Turbo C++ Software, PC 2 2 Topic : Looping statement Outcomes: ➤ To write the C program using the looping statements Resources: Turbo C++ Software, PC 3 3 Topic : Function Outcomes: ➤ To write the C program using functions Resources: ➤ To write the C program using functions Resources: ➤ To write the C program using functions 4 Topic : Array Outcomes:	
Outcomes: > To write the C program using conditional branching statements Resources: Turbo C++ Software, PC 2 2 Topic : Looping statement Outcomes: > To write the C program using the looping statements Resources: Turbo C++ Software, PC 3 3 Topic : Function Outcomes: > To write the C program using functions Resources: Turbo C++ Software, PC 4 4 Topic : Array Outcomes:	
 To write the C program using conditional branching statements Resources: Turbo C++ Software, PC Topic : Looping statement Outcomes: To write the C program using the looping statements Resources: Turbo C++ Software, PC Topic : Function Outcomes: To write the C program using functions Resources: Turbo C++ Software, PC To write the C program using functions Resources: Turbo C++ Software, PC Topic : Array Outcomes: 	
Resources: Turbo C++ Software, PC 2 Topic : Looping statement Outcomes: > To write the C program using the looping statements Resources: Turbo C++ Software, PC 3 3 Topic : Function Outcomes: > To write the C program using functions Resources: Turbo C++ Software, PC 4 4 Topic : Array Outcomes:	
2 Topic : Looping statement Outcomes: ➤ To write the C program using the looping statements Resources: Turbo C++ Software, PC 3 3 Topic : Function Outcomes: ➤ To write the C program using functions Resources: Turbo C++ Software, PC 4 Topic : Array Outcomes:	
Outcomes: > To write the C program using the looping statements Resources: Turbo C++ Software, PC 3 Topic : Function Outcomes: > To write the C program using functions Resources: Turbo C++ Software, PC 4 Topic : Array Outcomes:	
 To write the C program using the looping statements Resources: Turbo C++ Software, PC Topic : Function Outcomes: To write the C program using functions Resources: Turbo C++ Software, PC Topic : Array Outcomes: 	
Resources: Turbo C++ Software, PC 3 Topic : Function Outcomes: > > To write the C program using functions Resources: Turbo C++ Software, PC 4 Topic : Array Outcomes:	
3 Topic : Function Outcomes: > > To write the C program using functions Resources: Turbo C++ Software, PC 4 Topic : Array Outcomes:	
Outcomes: > To write the C program using functions Resources: Turbo C++ Software, PC 4 Topic : Array Outcomes:	
> To write the C program using functions Resources: Turbo C++ Software, PC 4 Topic : Array Outcomes:	
Resources: Turbo C++ Software, PC 4 Topic : Array Outcomes:	
4 Topic : Array Outcomes:	
Outcomes:	
To write C program using array	
Resources: Turbo C++ Software, PC	
5 Topic : File	
Outcomes:	
To write C program using file	
Resources: Turbo C++ Software, PC	
6 Topic : Array and Pointer	
Outcomes:	
To write C++ program using array	
Resources: Turbo C Software, PC	
7 Topic : Overloaded Operator	
Outcomes:	
To write C++ program using overloaded operators	
Resources: Turbo C++ Software, PC	
8 Topic : Derived Class Function	
Outcomes:	
 For write C++ program using derived class Resources: Turbo C Software, PC 	

Information on Lab Practical (2019-2020)

9	Topic : Pointer		
	Outcomes:		
	To write C++ program using pointers		
	Resources: Turbo C Software, PC		
10	Topic : Friend Function and File		
	Outcomes:		
	To write C++ program using friend function		
	To write C++ program using files		
	Resources: Turbo C Software, PC		

Daw Khin San ကထိက၊ ECဌာန

NO	Course Information (2019-2020)		
1	Unite name	Industrial Electronics and Control I	
2	Code	EcE-41031	
3	Classification:	Engineering Subject	
4	Credit value	3 (2-0-2)	
5	Semester/ Year Offered	1/4	
6	Pre-requisite:	Fundamental of Electronic Circuits,	
		Electronic Engineering Circuits,	
		Microelectronics,	
		Integrated Electronics	
7	Method of Delivery		
		Lecture, Discussion, demonstration	
8	Assessment System and Breakdown of Marks:	Tutorial, Assignment, Lab report	
	Tutorial and Assignment	10%	
	Lab Report	20%	
	Mid-term Examination	70%	
9	Academic Staff: teaching unit:	Department of Electronic Engineering	
10	Course outcome of unit:		
	 describe basic operation and compare performance of various semiconductor devices, passive components and switching circuits determine the power circuit configuration needed to fulfill the required power conversion with applicable constraints design and analyze power converter circuits by selecting the appropriate power semiconductor devices for the required application design the control circuits and power circuits for a given power converter for the required application perform the basic electronics troubleshooting by using tools/test equipment to analyze electronic components develop skills to build and troubleshoot power electronics circuits 		
	Synopsis of unit:		
	The course covers the power electronics devices with their operation and applic The course introduces to the students to the types of Thyristor, SCR, its termin turning ON and OFF of SCR, triggering SCR, forced commutation methods, charact and SCR operation, line commutation methods, Triacs, Diacs, Quadracs, Power of Power transistor, Power MOSFET, IGBT, unijunction transistor. And heating and we control, induction heating, dielectric heating and welding. And the next introduces students to the types of inverters, dual converters, choppers, cycloconverters, and control methods.		

12	Topic:		
	5.	Thyristors	
		5.1	Introduction
		5.2	Silicon Controlled Rectifier
			5.2.1 Constructional features
			5.2.2 Theory of operation of SCR with two transistor anology
			5.2.3 Physical operation of SCR
		5.3	SCR Terminology
			5.3.1 Forward breakover voltage or forward breakdown voltage
			5.3.2 Reverse breakdown voltage
			5.3.3 ON – state voltage
			5.3.4 Finger voltage
			5.3.5 Average ON – state current
			5.3.6 Holding current
			5.3.7 Latching current
			5.3.8 Forward current rating
			5.3.9 Gate triggering current
			5.3.11 Turn – on time
			5.3.12 Turn – off time
		5.4	Different Methods of Turning on of SCRs
			5.4.1 Radiation triggering or light turn – on
			5.4.2 Voltage triggering or breakover voltage turn – on
			5.4.3 $dv/dt turn - on$
			5.4.4 Gate turn – on or gate triggering
		5.5	Different Methods of Turning off of SCRs
			5.5.1 Natural commutation
			5.5.2 Forced commutation
			5.5.3 Gate turn – off
		5.6	Different Methods of Triggering SCR Circuits
			5.6.1 Pulse control by $R - C$ network
			5.6.2 Pulse triggering by saturable reactor
			5.6.3 Composite triggering by PWM controller
			5.6.4 Pulse triggering by discrete transistors
		5.7	Different methods of Forced Commutation
			5.7.1 Class A commutation (Series resonant commutation by an LC circuit)
			5.7.2 Class B commutation (Parallel resonant commutation by an
			573 Class C commutation (Complementary commutation or
			parallel capacitor turn – off)
			574 Class D commutation (Auxiliary commutation)
			5.7.5 Class E commutation (External pulse commutation)
			5.7.6 Class E commutation (AC line commutation)
		5.8	Comparison of SCRs and Transistors
		5.9	Thermal Characteristics of SCRs
		5.10	Causes of Damage to SCR
			5.10.1 Preventing damage to SCRs
		5.11	The SCR Crower or Overvoltage Protection Circuit
		5.12	Series and Parallel Operation of SCRs
			5.12.1 Series connected SCRs
			5.12.2 Triggering of series connected SCRs
			5.12.3 Parallel connection SCRs
			5.12.4 Triggering of parallel connected SCRs
		5.13	Line – commutated Converters or Rectifier Circuits

	5.13.1	Half – wave rectifier (inductive load)
	5.13.2	Half – wave rectifier (resistive load)
	5.13.3	Full – wave control circuit
	5.13.4	Single – phase full – wave controlled rectifier using center –
		tap transformer (M -2 connection)
	5.13.5	Single – phase bridge rectifier
	5.13.6	Single – phase full – wave full – controlled bridge rectifier
	5.15.0	(B - 2 connection)
	5 13 7	Single = phase full = wave half = controlled bridge rectifier
	5.15.7	(B = 2 connection)
	5 1 3 8	(D - 2 connection) Three – phase full – wave rectifier (M – 6 connection or six –
	5.15.0	nuce – phase run – wave rectifier (ivi – 0 connection of six –
	5 12 0	Three phase full wave full controlled bridge rectifier (P
	5.15.9	finee – phase fun – wave fun – controlled bridge fectifier (B
	5 1 2 1	- 0 connection)
	5.15.1	0 Three – phase tuil – wave half – controlled bridge rectifier
	E 10 1	$(\mathbf{B} - 6 \text{ connection})$
	5.13.1	1 Inree – phase half – wave diode rectifier with resistive load
	5.13.1	2 Differences between full – controlled bridge and half –
		controlled bridge rectifiers
5.1	4 TRIA	CS
	5.14.1	Gate triggering modes of the Triac
	5.14.2	Choice between triacs and SCRs
	5.14.3	Comparison of triacs with antiparallel SCRs
5.1	5 DIAC	S
5.1	6 QUAI	DRACS
5.1	7 Recov	ery Characteristic
5.1	8 First F	Recovery Diodes
5.1	9 Power	Diodes
	5.19.1	Current ratings of power diodes
	5.19.2	Voltage rating of power diodes
	5.19.3	Protection of the power diode (Snubber circuit)
5.2	20 Power	Transistors or Power BJTs
	5.20.1	Snubber circuit (Switching – aid circuit) of the power BJT
	5.20.2	Switching characteristic of the power transistor
5.2	1 Power	MOSFETS
	5.21.1	Snubber circuit (Switching - aid circuit) of the power
		MOSFET
	5.21.2	Switching characteristics of the power MOSFET
5.2	2 Insula	ted Gate Bipolar Transistor (IGBT)
5.2	Loss c	of Power in Semiconductor Devices
5.2	4 Comp	arison between Power MOSFET, Power Transistor, and Power
	IGBT	
5.2	5 Uniju	nction Transistor
5.2	6 Electro	on Tubes
	5.26.1	Gas – filled diode
	5.26.2	Thyratrons
	5.26.3	Ignitron (Mercury – pool tube)
6 Inv	verters, Du	al Converters, Choppers and Cycloconverters
6.1	Invert	ers
6.2	Line –	commutated Inverters
	6.2.1	Single – phase line – commutated full – controlled inverter
	6.2.2	Three – phase line – commutated full – controlled inverter or

six – pulse converter

	6.3	Forced – commutated Inverters
	0.0	6.3.1 Single – phase parallel – capacitor commutated inverter
		(Resistive load)
		6.3.2 Single – phase parallel – inverter with feedback diodes
		6.3.3 Single – phase series inverter
	6.4	Voltage – source Inverter
	6.5	Current – source Inverter
		6.5.1 Differences between voltage – source and current – source
		inverters
	6.6	Three – phase Forced – commutated Bridge Inverters
	6.8	Dual Converters
		6.8.1 The phase – controlled dual converter
		6.8.2 Single – phase dual converter
		6.8.3 Types of three – phase dual converters
		6.8.4 Circulating current type dual converter (Mid – point configuration)
		6.8.5 Circulating current type dual converter (Dual – bridge
		configuration)
		dual converter
		6.8.7 Different configurations used for dual converters
	6.9	Choppers
		6.9.1 Principle of operation
		6.9.2 Chopper control technique
		6.9.3 Voltage step – down chopper
		6.9.4 Voltage step – up chopper
		6.9.5 Jones chopper
		6.9.6 Two – quadrant chopper or reversible chopper
	<i>c</i> 10	6.9.7 AC chopper
	0.10	Cycloconverters
		6.10.2 Single phase/single phase avalagenverter (Mid point
		configuration)
		6.10.3 Single–phase/single–phase cycloconverter (Bridge
		configuration)
		6.10.4 Three – phase/single – phase cycloconverter
		6.10.5 Types of three – phase/single – phase cycloconverters
		6.10.6 Three – phase/single – phase cycloconverter (Circulating
		current type)
		0.10.7 Infee-phase/single-phase cycloconverter (Non – circulating
		6.10.8 Three – phase/three – phase cycloconverter
8	Heati	ng and Welding Control
	8.1	Introduction
	0.0	8.1.1 Advantages of electrical heating
	8.2	Induction Heating
		8.2.1 I neory of induction heating
		6.2.2 Principle of induction heating 8.2.3 Effects of supply frequency on induction heating
		8.2.4 Effects of source voltage on induction heating
		8.2.5 Choice of frequency for induction heating
		8.2.6 Advantages of induction heating
		8.2.7 Application of induction heating
		o.z., Appneuton of induction nouting

		8.2.8	Surface hardening of steel or surface heating of a small cylindrical rod
		8.2.9	Source of high frequency power supply for induction heating
	8.3	Dielec	tric Heating
		8.3.1	Electronic theory of dielectric heating
		8.3.2	Principle of operation of dielectric heating
		8.3.3	Dielectric heating in materials of irregular shapes
		8.3.4	Limitations of the use of extremely high frequency for
			dielectric heating
		8.3.5	Effect of vibration of voltage of the power supply on
			dielectric heating
		8.3.6	Effect of vibration of frequency of the power supply on
			dielectric heating
		8.3.7	Applications of dielectric heating
		8.3.8	Source of high frequency power supply for dielectric heating
		8.3.9	Differences between induction heating and dielectric heating
	8.4	Weldi	ng
		8.4.1	Theory of resistance welding
		8.4.2	Classification of resistance welding
	8.5	Schem	ne for AC Resistance Welding
	8.6	Ignitro	on Contractor as Electronic Line Contractor
		8.6.1	Heat control by the change of firing angles in ignitrons
		8.6.2	Complete control in resistance welding by a sequence timer
10			
13	Main References:		
	Biswanath Paul, "Inc	lustrial l	Electronics and Control including Programmable Logic
	Controller," 3 rd Editi	on, PHI	learning Private Limited, Delhi-110092, 2014
14	Additional referenc	es:	

Lab	Information on Practical (Industrial Electronics and control)		
1	Topic: Half wave rectifier (resistive load)		
	Task:		
	• To explian the operation of an SCR connected as a gate-controlled ac rectifier		
	• To observe the effects of varying gate current on the firing point of an		

	SCR connected as an ac rectifier		
	Resources: Multisim Software		
2	Topic: SINGLE PHASE FULL-WAVE CONVERTER		
	Task:		
	• To observe the phase relations between the voltage waveforms in a single		
	phase full-wave supply		
	• To observe the load waveforms and their phase in a single phase full-wave rectifier with resistive load		
	Resources: Multisim Software		
3	Topic: DC to DC Converter		
	Task:		
	• To test DC to DC Converter Circuit		
	Resources : Panel NO: P21 (Trainer)		
4	Topic: Light Dimmer Circuit using DIAC and SCR		
	Task:		
	• To explain the operation of DIAC and SCR phase control		
	• To control the lamp for arbitrary of light		
	• To construct the Light Dimmer Circuit using DIAC and SCR		
	Resources: Hardware		
	• DIAC, SCR, Resistors, Capacitors, project Board, Printed circuit board, Connection wire, 9V Battery.		
5	Topic: DC motor control with SCR		
	Task:		
	• To explain the operation of an SCR automatic-speed-control (ASC) circuit		
	• To learn how the speed and direction of rotation of a dc motor may be controlled		
	• To become familiar with some industrial control circuit schematic symbols		
	To demonstrate the analysis of a de shunt motor		
	• To demonstrate the operation of a dc shunt motor		
	Resources: Hardware		
	• BT06 SCR, Resistors, Switch, project Board, Printed circuit board, Connection wire, 9V Battery and DC motor.		