No	Course Information (2019-2020)				
1	Unit name: Digital Signal Processing I				
2	Code: EcE – 51005				
3	Classification:	Engineering subject			
4	Credit value:	3 (2-0-2)			
5	Semester/ Year Offered: 1/5				
6	Pre-requisite:	EcE – 21021 & 22021 Digital Electronics			
7	Mode of delivery:	Lecture, Demonstration for Experiment			
8	Assessment system and breakdown	Tutorial, Lab Report, Exam			
	of marks:				
	Assignment/Home work /Tutorial	10%			
	Lab Report	20 %			
	Q & A	70%			
9	Academic staff teaching unit:	Department of Electronic Engineering			
10	0 Course outcome of unit:				
	After completion of this course, students will be able to				
	1. Recognize signal processing, configurations, applications, operations,				
	advantages and disadvantages of digital system				
	2. Apply various theorems to determine Fourier Series, Fourier Transform, Z				
	Transform, Transfer Functions, Convolution of the signals				
	3. Apply time-domain and frequency-domain signals, z transform, FFT, DTFT,				
	Convolution, Filters using MATLAB to test the signal operations (LAB)				
11	Synopsis of unit:				
	This course provides a system	natic introduction to signal, signal processing			
	and digital system. It emphasizes the time-domain, frequency-domain and signal				
	filtering techniques. It also presents the theorem and properties of the z transform				
	and convergence. Transfer Functions, Time-domain and Frequency-domain				
	Analysis are also described in this course. In addition, it includes the process of				
	Interrelation, Sampling, Aliasing, A/D & D/A Converter. This course describes				
	the realization and implementation of digital filters.				

12	Торіс:			
	Chapter 1. Introduction to Digital Signal Processing			
	1.1 Introduction			
	1.2 Signals			
	1.3 Frequency-Domain Representation			
	1.4 Notation			
	1.5 Signal Processing			
	1.6 Analog Filters			
	1.7 Applications of Analog Filters			
	1.8 Digital Filters			
	1.9 Two DSP Applications Chapter 2. The Fourier Series and Fourier Transform			
	Chapter 2. The Fourier Series and Fourier Transform 2.1 Introduction			
	2.2 Fourier Series			
	2.3 Fourier Transform			
	Chapter 3. The z Transform			
	3.1 Introduction			
	3.2 Definition of z Transform			
	3.3 Convergence Properties			
	3.4 The z Transform as a Laurent Series			
	3.5 Inverse z Transform			
	3.6 Theorems and Properties			
	3.7 Elementary Discrete-Time Signals			
	3.8 z-Transform Inversion Techniques			
	3.9 Spectral Representation of Discrete-Time Signals			
	Chapter 4. Discrete-Time Systems			
	4.1 Introduction			
	4.2 Basic System Properties			
	4.3 Characterization of Discrete-Time Systems			
	4.4 Discrete-Time System Networks			
	4.5 Introduction to Time-Domain Analysis			
	4.6 Convolution Summation4.7 Stability			
	4.8 State-Space Representation			
14	Main reference:			
	1. Digital Signal Processing : Signals, Systems, and Filters, Andreas Antonious,			
	University of Vitoria, British Columbia, Canada			
	 Digital Signal Processing : Principles, Algorithms and Applications, Third 			
1.7	Edition, John G. Proakis, Dimitris G. Manolakis			
15	Additional references:			
	1. Digital signal processing using MATLAB, Third Edition, Vinary K. Ingle,			
	John G. Proakis, Northeastern University			
	2. DIGITAL SIGNAL PROCESSING USING MATLAB FOR STUDENTS			
	AND RESEARCHERS, JOHN W. LEIS, University of Southern Queensland			

Information on Practical (Digital Signal Processing)

Lab	Activity		
1	Topic: Generation of Basic Signals		
	Objectives:		
	• To distinguish different signals		
	• To write MATLAB code for signal generation		
	• To apply MATLAB Software		
	Resources:		
	i. Computer with MATLAB Software		
	Topic: Magnitude and Phase of Fourier Transform		
2	Objectives:		
	• To determine the Fourier transform of the non-periodic signal		
	• To write MATLAB code for signal generation of Fourier transform, its		
	magnitude and phase		
	• To be familiar with MATLAB Software		
	Resources:		
	i. Computer with MATLAB Software		
	Topic: Real and Imaginary Parts of Fourier Transform		
	Objectives:		
3	• To write MATLAB code for signal generation of the magnitude, phase, real		
	and imaginary parts of the Fourier transform for the discrete-time signal		
	• To distinguish the magnitude, phase, real and imaginary parts of the Fourier		
	transform for the discrete-time signals		
	• To be familiar with MATLAB Software		
	Resources:		
	i. Computer with MATLAB Software		

	Торіс	e: Sampling The Amplitude Modulated Discrete-Time		
	Signal			
4	Objectives:			
	i.	To write MATLAB code for signal generation of the modulating signal, carrier signal and amplitude modulated signal		
	ii.	To get the relation of theory and practical concepts		
	iii.	To be familiar with MATLAB Software		
	Resources:			
	i.	Computer with MATLAB Software		
	Topic:	Convolution and Graphical Convolution		
	Objecti	ves:		
	i.	To write MATLAB code for finding the convolution values		
5	ii.	To generate the graphical convolution signals		
	iii.	To get the relation of theory and practical concepts		
	iv.	To be familiar with MATLAB Software		
	Resources:			
	i.	Computer with MATLAB Software		

Approved By

Prepared By Daw Ei Ei Chaw Assitant Lecturer Department of Electronic Engineering