No	Course Information (2019-2020)		
1	Unit name:	Modeling and Control I (2019-2020)	
2	Code:	EcE 31003	
3	Classification:	Engineering subject	
4	Credit value:	3(2-1-1)	
5	Semester/ Year Offered:	1/3	
6	Pre-requisite:	EcE 21001&21002 ,Electronics Engineering	
		Circuit	
7	Mode of delivery:	Lecture, Practical, Tutorial, Discussion,	
		Presentation	
8	Assessment system and	Tutorial, Practical, Examination, Lab report	
	breakdown of marks:		
9	Tutorial	10%	
	Practical	20%	
	Mid-term Examination	70%	
10	Academic staff teaching unit:	Electronic Engineering	
11	Course outcome of unit:		
	In this course students will be able		
	To explain the basic open lo	op and closed-loop system	
	 To know transfer function of electrical systems from mechanical systems To solve problems by using Laplace transform method, state differential equation and state variable models 		
	 To solve problems in control system by using Matlab software 		
12	Synopsis of unit:-		
	The course covers the fundamenta	l of process for designing a control system. The	
	course introduces students to understand the purpose of a control systemwhich includes the use of control design strategies, the Laplace transform, the mathematical models of the systems, the transfer function of linear systems and signal flow graph		
	models, the state variables of dynamic systems, the state differential equation		

time response and the state transition matrix, open-loop and closed-loop systems, and sensitivity of control systems to
parameter variations and control of the transient response of control systems.
Disturbance signals in a feedback control system, steady-state error, test input signals, performance of a second- order system response, estimation relative stability of feedback control systems and the stability of state variable systems will also be learned.

13	Topic:			
	Chapter	Title		
	1	Introduction to Control Systems		
		1.1	Introduction	
		1.2	Brief History of Automatic Control	
		1.3	Example of Control Systems	
		1.4	Engineering Design	
		1.5	Control Systems Design	
		1.6	Mechatronic Systems	
		1.7	Green Engineering	
		1.8	The Future Evolution of Control Systems	
		1.9	Design Examples	
		1.10	Sequential Design Example: Disk Drive Read System	
		1.11	Summary	
	2	Math	Aathematical Models of Systems	
		2.1	Introduction	
		2.2	Differential Equations of Physical Systems	
		2.3	Linear Approximations of Physical Systems	
		2.4	The Laplace Transform	
		2.5	The Transfer Function of Linear Systems	
		2.6	Block Diagram Models	
		2.7	Signal -Flow Graph Models	
		2.8	Design Examples	
		2.9	The Simulation of Systems Using Control Design Software	
		2.10	Sequential Design Example: Disk Drive Read System	
		2.11	Summary	

3	State	State Variable Models	
	3.1	Introduction	
	3.2	The State Variables of a Dynamic System	
	3.3	The State Differential Equation	
	3.4	Signal-Flow Graph and Block Diagram Models	
	3.5	Alternative Signal-Flow Graph and Block Diagram Models	
	3.6	The Transfer Function from the State Equation	
	3.7	The Time Response and the State Transition Matrix	
	3.8	Design Examples	
	3.9	Analysis of State Variable Models Using Control Design	
		Software	
	3.10	Sequential Design Example: Disk Drive Read System	
	3.11	Summary	
1	1 Matlab Fundamentals		
	1.1 Ma	atlab Basis Operations	
	1.2 Ma	atrix Operations	
	1.3 Ar	ray Operations	
	1.4 Co	mplex Numbers	
	1.5 Th	e Colon Symbol (:)	
	1.6 M-	files	
2	Pl	otting Commands	
	2.1 Gr	aph Functions	
	2.2 X-	Y Plots and Annotations	
	2.3 Lo	garithmic and Polar plots	
2.4 Screen Control		reen Control	
3	С	ontrol Statements	
	3.1 For	r Loops	
	3.2 If s	statements	
	3.3 WI	nile loop	
	3.4 Inp	out/Output Commands	

14	Main references:		
	Modern Control System, 11 th Edition, Richard C. Dorf and Robert H. Bishop		
	Electronics and Circuit Analysis using MATLAB		
15	Additional references: Notes by Modern Control System(11 st Edition),Richard C. Dorf and Robert H. Bishop, Prentice-Hall,Upper Saddle (<u>http://www</u> . Mypearsonstore.com>bookstore)		

Prepared by Daw Win Yu Cho Lecturer Department of Electronic Engineering Technological University (Kyaukse)

Information on Lab Practical (EcE-31003 Modeling and Control)

-

г

Lab	Activity	
1	Experiment 1: Evaluate the complex number by using MATLAB Software	
	Objectives:	
	• To apply Matlab software as a calculation tools	
	To apply Matlab/Simulink Software	
	Equipment required:	
	Matlab software, Personal computer	
2	Experiment 2: If-else if statement by using MATLAB Software	
	Objectives:	
	• To apply Matlab software as a calculation tools	
	To apply Matlab/Simulink Software	
	Equipment required:	
	• Matlab software, Personal computer	
3	Experiment 3: To plot v(t) and i(t) versus time(t) by using MATLAB Software	
	Objectives:	
	• To apply Matlab software as a calculation tools	
	• To understand the voltage and power calculation	
	To apply Matlab/Simulink Software	
	Equipment required:	
	Matlab software, Personal computer	

4	Experiment 4: If-else if statement and For loop repetition statement by using		
	MATLAB Software		
	Objectives:		
	• To apply Matlab software as a calculation tools		
	• To generate the Fibonacci sequence up to the twelfth term		
	• To convert analog signal x to digital signal y		
	To apply Matlab/Simulink Software		
	Equipment required:		
	• Matlab software, Personal computer		
5	5 Experiment 5: To draw a graph of gain versus frequency and x(t) versus y(t) by		
	using MATLAB		
	Objectives:		
	• To apply the Matlab software as a calculation tools		
	• To build the Matlab program to draw Bode Plot of an amplifier using semilogx function		
	• To determine the value of $x(t)$ and $y(t)(t = 0 \text{ to } 10 \text{ ms})$		
	• To plot x(t) versus y(t)		
	To apply Matlab/Simulink Software		
	Equipment required:		
	• Matlab software, Personal computer		

Prepared by Daw Win Yu Cho Lecturer Department of Electronic Engineering Technological University (Kyaukse)