No	Course Information (2019-2020)	
1	Unit Name :	Engineering Circuit Analysis I
2	Unit Code:	EcE 31001
3	Classification :	Engineering Subject
4	Credit Value :	3.5 (2-1-2)
5	Semester /Year Offered :	1/3
6	Pre-requisite (if any) :	
7	Mode of Delivery:	Lecture, Tutorial and Practical
	Assessment System and Breakdown of Marks:	
	Practical	20%
8	Tutorial/ Assignment	10%
	Examination	70%
9	Academic Staff Teaching Unit: Department of E	Electronic Engineering
10	Learning Outcome of Unit:	
	After completing this unit, students will be able	to:
	• determine the response of first order RL,	RC circuits and second order RLC circuits
	• solve the RLC circuits either by using s-	domain analysis
	• simulate and construct the RL, RC and R	RLC circuits
11	Synopsis of Unit:	
	The course covers RL circuits, RC circuits,	RLC circuits, Laplace transformation, circuit
	analysis in the s-domain, frequency response, tw	vo-port networks and Fourier analysis.
12	Topics and Contents	
	Topic 1: Basic RL and RC Circuits	
	• The Source-Free RL Circuit, Properties	of the Exponential response
	The Source-Free RC Circuit	
	• A more general perspective	
	The Unit-Step Function	
	Driven RL Circuits	
	Natural and Force Response	
	Driven RC Circuits	
	Topic 2: The RLC Circuits	
	• The Source-Free parallel circuit	
	• The Overdamped parallel RLC circuit	
	Critical Damping	
	The Underdamped parallel RLC circuit	

	The Source-Free series RLC circuit
	The Complete response of the RLC circuit
	The Lossless LC Circuit
,	Topic 3: Complex Frequency and the Laplace Transform
	Complex Frequency
	The Damped Sinusoidal Forcing Function
	Definition of the Laplace Transform
	Laplace Transforms of simple time functions
	Inverse Transform Techniques
	Basic Theorems for the Laplace Transform
	The Initial-Value and Final-Value Theorem
,	Topic 4: Circuit Analysis in the s-Domain
	• Z(s) and Y(s)
	 Nodal and Mesh Analysis in the s-Domain
	Additional Circuit Analysis Techniques
	Poles, Zeros and Transfer Functions
	Convolution
	The Complex-Frequency Plane
	Natural Response and the s-Plane
	• A technique for synthesizing the Voltage Ratio $H(s) = V_{out}/V_{in}$
Main Refe	rences:
1. Enginee	ering Circuit Analysis, Eighth Edition, Willian H-Hayt, Jr.Jack E-Kemmerly, Steven M.Durbin
2012, ISBI	N 978-0-07-352957-8

Additional References:

2. Circuit Analysis, John E Whitehouse, 1997, ISBN 1-898563-40-3

Information on Lab Practical

1	Topic: Experiment 1: Response of First Order RL Circuit Outcomes:
	To determine the time constant of an RL circuit.To plot the response of the first order RL circuit.
	Resources: Multisim Software
2	Topic: Experiment 2: Response of First Order RC Circuit Outcomes:
	• To determine the time constant of an RC circuit.
	• To plot the frequency response of the first order RC circuit.
	Resources: Multisim Software
3	Topic: Experiment 3: Response of Second Order RLC Series Circuit
	Outcomes:
	• To describe the transient response to a step input.
	• To observe the second-order circuit response waveforms over-damping, critical damping and underdamping.
	 To plot the frequency response of second-order circuit
	Deserves Maltining Coffeenant
	Resources: Multisim Software
4	Topic: Experiment 4: Laplace Transform for RLC Circuit
	Outcomes:
	• To demonstrate the Laplace transform techniques
	• To plot the response of a series RLC circuit to a step function using Matlab
	Resources: Matlab software, Computer
5	Topic: Experiment 5: Wien Bridge Oscillator Circuit

Outcomes:

- To simulate the Wien Bridge oscillator using multisim software.
- To find the effect on output frequency with variation in RC combination.

Resources: Multisim Software

Daw Pyone Ei Ei Cho Assistant Lecturer Department of Electronic Engineering