No		Course Information	
1	Unit name:	Computer Aided Electrical Engineering	
2	Code:	EP-61033	
3	Classification:	Engineering subject	
4	Credit value:	1.5	
5	Semester/ Year Offered:	1/6	
6	Pre-requisite:	NA	
7	Mode of delivery:	Lecture, Practical	
8	Assessment system and	Tutorial, Practical, Attendence, Classwork	
	breakdown of marks:		
	Tutorial, Practical	40	
	Attendence	30	
	Classwork	30	
9	Academic staff teaching		
	unit:		
	Course outcome of unit:		
10	In this course students will	be able	
	• Solve the mathema	tical problems including matrix algebra, complex	
	arithmetic, linear sy	stems and non-linear differential equations, etc by	
	aiding computer.		
	Compute the power	flow solution of an interconnected power system.	
	• Estimate the real a	nd reactive power scheduling of power plant in	
	such a way to minim	nize the operating cost.	
	Predict bus voltages	and line currents during various types of faults.	
	• Create simulation b	lock diagrams and graphics.	
	Synopsis of unit:		
11	The course covers computer	software package for high performance numerical	
	computation and visualiza	tion. These functions provide solutions to a	
	broad range of mathematic	cal problems including matrix algebra, complex	
	arithmetic, linear systems, differential equations, signal processing,		
	optimization, non-linear s	ystems, and many other types of scientific	
	computations. The most	important feature of computer aiding is its	
	programming capability wh	ich is very easy to learn and to use, and which	

allows user-dev	veloped functions.
Tonio	
Topic:	
Chapter	Title
Appendix A	Introduction to MATLAB.
Installing the t	ext toolbox
Running matl	ab
Variables Output format	
Character strir	ng
Vector operati	ons
Elementary m	atrix operations
Complex num	bers
Polynomial ro	ots and characteristic polynomial
Graphics	
Loops and log	ical statement
Solution of dif	fferential equations
Nonlinear Sys	tems
Simulation dia	ngram
Chapter 6	Power Flow Analysis
Introduction	
Bus admittanc	e matrix
Solution of no	nlinear algebraic equations
Power flow so	lution
Gauss-Seidel	power flow solution
Line flows and	d losses
Tap changing	transformers
Power flow pr	ograms
Data preparati	on
Newton-Raph	son power flow solution
Fast decoupled	d power flow solution
Chapter 7	Optimal dispatch of generation
Nonlinear fur	action optimization

	Operation cost of a thermal plant
	Economic dispatch neglecting losses and no generator limit
	Economic dispatch neglecting losses and including generator limit
	Economic dispatch including losses
	Derivation of loss formula
	Chapter 9 Balanced Fault
	Balanced three-phase fault
	Short-Circuit capacity
	Systematic fault analysis using bus impedance matrix
	Algorithm for formation of the bus impedance matrix
	Zbuild and symfault program
	Chapter 10 Symmetrical Components and Unbalanced Fault
	Fundamentals of symmetrical components
	Sequence impedances
	Sequence networks of a loaded generator
	Single line-to-ground fault
	line-to-line fault
	Double line-to-ground fault
	Unbalanced fault analysis using bus impedance matrix
	Unbalanced fault programs
	Chapter 11 Stability
	Swing equation
	Synchronous machine models for stability studies
	Steady-state stability small disturbances
	Transient stability equal area criterion
	Application to three-phase fault
	Numerical solution of nonlinear equation
	Numerical solution of the swing equation
	Multimachine systems
	Multimachine transient stability
14	Main references:
	Power System Analysis, Hadi Saada
	Essential Matlab for Engineers and Scientists, Third Edition, Brian Hahn &

	Daniel T. Valentine
15	Additional references:
	Matlab for Engineers, Third Edition, Holly Moore.
	MATLAB for Beginners, Revised Edition, Peter I. Kattan.

Information on Lab Practical	
JOB-1 Elementary Matrix Operation	
Objective: To solve the elementary operation by using Matlab software	
Required Equipment Computer installed with Matlab software	
 Job-2 Graphics Objective: To create two dimensional plots 	
Required Equipment Computer installed with Matlab software	
Job-3 Simulation Block Diagram	
 Objective: To create simulink block diagram To see the simulink result in the computer screen 	
To see the simulink result in the computer screen	
Computer installed with Matlab software	
Job-4 Power Flow Solution	
Objective:	
• To solve the power flow problems of an interconnected power system	
Required Equipment	
Computer installed with Matlab software	
Job-5 Fault Calculation	
Objective:	
• To become familiar with modelling and analysis of power systems under faulted condition and to compute the fault level, post-fault voltages and currents for different types of faults, both	

symmetric and unsymmetric.
Required Equipment
Computer installed with Matlab software