No	Course Information	
1	Unit name:	Programmable Logic Control I
2	Code:	EP 41028
3	Classification:	Engineering subject
4	Credit value:	2.5
5	Semester/ Year Offered:	1/4
6	Pre-requisite:	NA
7	Mode of delivery:	Lecture, Practical
8	Assessment system and	
	breakdown of marks:	
	Test	20%
	Mid-term Examination	30%
9	Academic staff teaching unit:	6

10 | Course outcome of unit:

In this course students will be able

- To memorize the basic knowledge of PLC, components of PLC hardware
- To memorize the useful numbering system and codes for PLC
- To draw the relationship between the relay schematics, ladder logic programs and the equivalent logic gate circuits
- To memorize the basic instructions of PLC programming and field devices used in PLC connection and process control
- To Apply the components of relay schematic diagrams, compare the PLC connections with I/O modules and built the logic gate circuits by using software

11 | Synopsis of unit:

The course covers the fundamental and components of PLC, number systems and logics and input/output control devices commonly found in PLC installations. This course introduces students to PLC, the parts of PLC, input/output control devices commonly found in PLC installations, and fundamental of logics and illustrates the

ladder dia	agram for the process of the machine operation.
Topic:	
Chapter	Title
1. Progra	ammable Logic Controllers(PLCs): An Overview
C	rogrammable Logic Controllers
• Pa	arts of a PLC
• P1	rinciples of Operation
• M	Iodifying the Operation
• P	LCs versus Computers
• P	LC size and Application
2. PLC F	Iardware Components
•	The I/O Section
•	Discrete I/O Modules
•	Analog I/O Modules
•	Special I/O Modules
•	I/O Specifications
•	The Central Processing Unit (CPU)
•	Memory Design
•	Memory Types
•	Programming Terminal Devices
•	Recording and Retrieving Data
•	Human Machine Interfaces(HMIs)
3. Numb	er Systems and Codes
	Decimal System
	Binary System
	Negative Numbers
	Octal System

Binary Coded Decimal (BCD) System

- Gray Code
- ASCII Code
- Parity Bit
- Binary Arithmetic
- Floating Point Arithmetic

4. Fundamentals of Logic

- The Binary Concept
- AND, OR, and NOT Functions
- Boolean Algebra
- Developing Logic Gate Circuits From Boolean Expressions
- Producing the Boolean Equation for a Give Logic Gate Circuit
- Hardwired Logic Versus Programmed Logic
- Programming Word Level Logic Instructions

5. Basics of PLC Programming

- Processor Memory Organization
- Program Scan
- PLC Programming Languages
- Bit-Level Logic Instructions
- Instruction Addressing
- Branch Instructions
- Internal Relay Instructions
- Programming Examine If Closed and Examine If Open Instructions
- Entering the Ladder Diagram
- Modes of Operation
- Connecting with Analog Devices

6. Developing fundamental PLC Wiring Diagrams and Ladder Logic Programs

- Electromagnetic Control Relays
- Contactors
- Motor Starters
- Manually Operated Switches
- Mechanically Operated Switches
- Sensors
- Output Control Devices
- Seal-In Circuits
- Electrical Interlocking Circuits
- Latching Relays
- Converting Relay Schematics into PLC Ladder Program

	 Writing a Ladder Logic Program Directly from a Narrative Description Instrumentation
14	Main references:
	1. FrankD. Petruzella, Fifth Edition.
	2. Previous Editions: 2011, 2005 and 1998.
L	Additional references:

Information on Lab Practical

Job	Title		
1.	Study on equipment of motor control and components of PLC		
	Objectives:		
	- To study some of typical symbols used in motor control circuit diagrams		
	- To state the names of PLC hardware components		
	- To represent motor control drawings and ladder diagram of PLC.		
2.	JOB-2 Direct on line Motor Control System		
	Objectives		
	- To understand the usage of relay logic diagram		
	- To make wiring connection for direct on line motor control system		
	- To explain the operation of the motor control system.		
	Required equipment		
	1. Main and sub feeder isolating circuit breakers		
	2. Power and control circuit fuses		
	3. Indicating pilot lamps		
	4. Pushbuttons (stop, start)		
	5. Magnetic Contactor		
	6. Overload Relay		
	7. 3 phase motor		
	8. Cables as required		

JOB-3 Logic Circuit Modelling and Simulation with Multisim Objectives:

- To understand the binary concept and the functions of logic gates
- To be able to drive Boolean equations for logic circuits
- To use the NI Multisim software

3.

Required equipment		Qty
1.	V_{CC} (5V)	1
2.	Resistor $(1k\Omega)$	1
3.	Indicators (pilot lamps)	2
4.	Switches (SPST)	3
5.	Switches (SPDT)	1
6.	AND gate (7408J)	2
7.	OR gate (7432N)	1
8.	NOT gate (7404N)	1
9.	Output (Lamp 5V_1W)	1
10	. Logic analyzer (XLAI)	1

4. JOB-4 Hardwired Logic versus Programmed Logic Objectives

- To understand the operation of relay ladder schematics
- To implement hardwired logic by using relays and relay ladder schematics
- To convert relay ladder schematics to ladder logic program

Required equipment

- 1. Main and sub feeder isolating circuit breakers
- 2. Power and control circuit fuses
- 3. Indicating pilot lamps
- 4. Pushbuttons (stop, start)
- 5. Magnetic Contactor
- 6. Overload Relay
- 7. Cables as required

JOB-5 Forward-Reverse Motor Operation Objectives

- To understand the usage of relay logic diagram
- To change the direction of a three phase motor rotation
- To learn about the principle of electrical interlocking

Required equipment

- 1. Main and sub feeder isolating circuit breakers
- 2. Power and control circuit fuses
- 3. Indicating pilot lamps
- 4. Pushbuttons
- 5. Magnetic Contactors
- 6. Overload Relay
- 7. 3 phase motor
- 8. Cables as required