No	Information of every subject		
1	Unit name:	Engineering Mathematics (V)	
2	Code:	EM -31005	
3	Classification:	Supporting Subject	
4	Credit value:	4.5	
5	Semester/ Year Offered:	1/3	
6	Pre-requisite:		
7	Mode of delivery:	Lecture, Tutorial, Oral	
8	Assessment system and		
	breakdown of marks:		
	Test	15%	
	Final Examination	35%	
9	Academic staff teaching unit:	Engineering Mathematics	
10	Course Outcomes of unit:		
	In this course, students will be able to		
	• solve some types of first order differential equations		
	• solve linear ODEs of second order which is important engineering		
	application		
	• solve extend the concepts and methods of second order linear		
	ODEs		
	• solve the differential equations by Laplace Transforms		
	 calculate the series of the function by using Fourier Series. 		
	Integrals and Transforms		
11	Synopsis of unit:		
	The course introduces students to First-Order Ordinary		
	Differential Equations, Second-Order Linear Ordinary Differential		
	Equations, Higher Order Linear Ordinary Differential Equations, Laplace		
	Transforms, Fourier Series, Integral	s, and Transform.	
12	Topic:		
	1. First-Order Ordinary Differential Equations		
	- Basic Concepts, Modeling		
	- Separable Ordinary Differential Equations, Modeling		
	- Exact Ordinary Differential Equations. Integrating Factors		
	- Linear Ordinary Differential Equations, Bernoulli Equation,		
	Population Dynamices		
	2. Second-Order Linear Ordinary Differential Equations		
	- Homogenous Linear Ordinary Differential Equations of Second		
	Order		
	- Homogeneous Linear Ordinary Differential Equations with		
	Constant Coefficients		
	- Differential Operators. Op	tional	
	- Euler- Cauchy Equations		

	 Existence and Uniqueness of Solutions. Wronskian Nonhomogeneous Ordinary Differential Equations Solution by Variation of Parameters 	
	3. Higher Order Linear Ordinary Differential Equations	
	 Homogenous Linear Ordinary Differential Equations Homogenous Linear Ordinary Differential Equations with Constant Coefficients Nonhomogeneous Linear Ordinary Differential Equations 	
	6. Laplace Transforms	
	 Laplace Transform. Inverse Transform. Linearity. s-Shifting Transforms of Derivatives and Integrals. Ordinary Differential Equations 	
	- Unit Step Function.(Heaviside Function), Second Shifting Theorem (t-Shifting)	
	- Convolution. Integral Equations	
	11. Fourier Analysis	
	- Fourier Series - Arbitrary period Even and Odd Functions Half-Range	
	Expansions	
	- Forced Oscillations	
	- Approximation by migonometric Polynomials	
14	Main references:	
	- Advanced Engineering Mathematics (10 th Edition, ERWIN KREYSZIG, Copyright @ 2006 John-Wiley and Sons Inc.	
15	Additional references: - http://www.wiley.com/college/kreyszig/.	