No	Information of - IT 51027					
1	Unit name:	Digital Signal Processing				
2	Code:	IT 51027				
3	Classification:	Engineering subject				
4	Credit value:	3				
5	Semester/ Year Offered:	1/2				
6	Pre-requisite:	Digital Signal Processing				
7	Mode of delivery:	Lecture, Practical, Assessment				
8	Assessment system and breakdown of					
	marks:					
	Practical	20%				
	Assignment	10%				
	Mid-term/ final Examination	70%				
9	Academic staff teaching unit:	Department of Information Technology				
		Engineering				
10	Course outcome of unit:					
	In this course, students will be able					
	To describe the fundamentals of Digital Signal processing					
	To determine the z-Transform of finite and infinite duration signals					
	To get the concepts of frequency in continuous-time and discrete-time signals					
	To difference analog-to-digital and digital-to-analog conversion					
	To describe the properties of the z-transform					
11	Synopsis of unit:					
	IT-51027, Digital Signal processing, The course covers the fundamental of					
	Signals, Systems and Signal Processing, Classification of Signals, The Concept of					
	Frequency in Continuous-time and Discrete-Time Signals, Analog-to-Digital and					
	Digital-to-Analog Conversion, Discrete-Time Signals and Systems: Discrete-Time					
	Signals, Discrete-Time Systems, Analysis of Discrete-Time Linear Time-Invariant					
	Systems, Discrete-Time Systems Described by Difference equations, Correlation of					
	Discrete-Time Signals. Several features of this text are designed to make it					
	particularly easy for students to understand digital signal processing. There are					
	review questions, exercises and research activities at the end of all chapters to					
	enhance the book's usefulness in the classroom.					
12	Topic:					
	1.1 Course Introduction					

1.2 Signals, Systems and Signal Processing 1.3 Classification of Signals 1.4 The Concept of Frequency in Continuous-Time and Discrete-Time Signals 1.5 Analog-to-Digital and Digital-to-Analog Conversion 1.6 Summary and References 2. Discrete-Time Signals and Systems 2.1 Discrete-Time Signals 2.2 Discrete-Time Systems 2.3 Analysis of Discrete-Time Linear Time-Invariant Systems 2.4 Discrete-Time Systems Described by Difference Equations 2.5 Correlation of Discrete-Time Signals 2.6 Summary and References 3. The z-Transform and Its Application to the Analysis of LTI System The z-Transform 3.2 The Properties of z-Transform 3.3 Rational z-Transform 3.4 Inversion of the z-Transform 3.5 The One-Sided z-Transform 3.6 Analysis of Linear Time-Invariant Systems in the z-Domain **Problems** 4. Frequency Analysis of Signals 4.1 Frequency Analysis of Analog Signals 4.2 Frequency Analysis of Discrete-Time Signals 4.3 Properties of Fourier Transform for Discrete-Time Signals 4.4 Frequency-Domain Characterization of Signals and Time Frequency Dualities 4.5 Sampling of Signals in the Time and Frequency Domain 14 Main references: John G.Probkis and Dimi is G-Monolakis, Digital Signal Processing (3-0-2) 15 Additional references: - Sanjit K. Mitra, Digital Signal Processing, Second Edition. - Alexander Poularikas, applied Signal processing, 2004 by CRC Press LLC. - International Standard Book Number: 0-8493-1427-5. CRC Press Web site at www.crcpress.com.