No.	Information on Fluid Mechanics	s I
1.	Unit Name: Fluid Mechanics I	
2.	Code: CE-31016	
3.	Classification: Engineering Subject	
4.	Credit Hour: 3	
5.	Semester and year Taught: 1/3	
6.	Pre-requisite (if any): None	
7.	Method of Delivery: Lecture, Tutorial and Practical	
8.	Assessment System and Breakdown of Marks	
	Practical	20%
	Tutorial	10%
	Final Examination	70%
	Total	100%
9.	Academic Staff Teaching Unit:	
10.	Objective of Unit:	
	The main aim of this subject is to understand the proper in both static and motion conditions and apply the princi in engineering applications.	ties and behavior of fluids ples of fluid mechanics
11.	Learning Outcomes of Unit	
	At the end of the unit, a student shall be able to:	
	(a) Define the fluids and their properties and demonstrat particles and streams.	e motion of fluid
	 (b) Apply Momentum, Energy, Continuity, Darcy and B conservation of mass and energy and Newton's Secon contents of a finite control volume, Buckingham pi th of modeling and similitude to develop prediction equation (c) Calculate and determine fluid pressure and force, dis head and power losses and efficiency due to friction, similitude, and modeling 	ernoulli's equation, ad law of motion to the eorem and the concepts ations. charge, velocity, pressure dimensional analysis,
12.	Synopsis:	
	The unit is intended to understand Fluid properties, Fluid Control volume analysis, Continuity, momentum and en Dimensional analysis and similitude, Flow in pipes and	d statics and to calculate ergy equations, conduits.

13.	Topic 1. Fluids and their Properties
	Fluids Shear stress in a moving fluid Differences between solids and fluids Newtonian and non-Newtonian fluids Liquids and gases Density Viscosity Surface tension Capillarity Cavitation
	Topic 2. Static Forces on Surfaces. Buoyancy
	Action of fluid pressure on a surface Resultant force and centre of pressure on a plane surface under uniform pressure Resultant force and centre of pressure on a plane surface immersed in a liquid Pressure diagrams Force on a curved surface due to hydrostatic pressure Buoyancy Equilibrium of floating bodies Stability of a submerged body Stability of floating bodies Determination of the position of the metacentre relative to the centre of buoyancy Stability of a vessel carrying liquid in tanks with a free surface
	Topic 3. Motion of Fluid Particles and Streams
	Fluid flow Uniform flow and steady flow Compressible and incompressible flow One-, two- and three-dimensional flow Motion of a fluid particle Laminar and turbulent flow Discharge and mean velocity Continuity of flow
	Topic 4. The Momentum Equation and its Applications
	Momentum and fluid flow Momentum equation for two- and three-dimensional flow along a streamline Force exerted by a jet striking a flat plate Force due to the deflection of a jet by a curved vane Force exerted when a jet is deflected by a moving curved vane Force exerted on pipe bends and closed conduits Reaction of a jet

Topic 5. The Energy Equation and its Applications
Mechanical energy of a flowing fluid Steady flow energy equation Kinetic energy correction factor Applications of the steady flow energy equation Representation of energy changes in a fluid system The Pitot tube Principle of the venturi meter Theory of small orifices discharging to atmosphere Theory of large orifices Elementary theory of notches and weirs The power of a stream of fluid Vortex motion
Topic 6. Steady Incompressible Flow in Pipe and Duct Systems
General approach Incompressible flow through ducts and pipes Incompressible flow through pipes in parallel Incompressible steady flow in duct networks Resistance coefficients for pipelines in series and in parallel The quantity balance method for pipe networks
Topic 7. Finite Control Volume Analysis
Conservation of Mass-The Continuity Equation Newton's Second Law-The Linear Momentum and Moment of-Momentum Equations First Law of Thermodynamics-The Energy Equation Second Law of Thermodynamics-Irreversible Flow
Topic 8. Dimensional Analysis, Similitude, And Modeling
Dimensional Analysis Buckingham Pi Theorem Determination of Pi Terms Common Dimensionless Groups in Fluid Mechanics Correlation of Experimental Data, Modeling and Similitude Some Typical Model Studies Similitude Based on Governing Differential Equations

14.	Main References: 1.John F.Douglas, Janusz M. Gasiorek, John A. Swaffield, Lynne B. Jack.
	2.Muson .Young.Okiishi.Huebsch, Fundamentals of Fluid Mechanics (6 th edition)
15.	Additional Reference: 1.R.S.Khurmi, A Textbook of Hydraulics, Fluid Mechanics and Hydraulic Machines SI Units. (19 th edition)

Information on Lab Practical (Fluid Mechanics I)

Lab	Activity
M1	Topic: Fluid Properties
	Task: To calculate density of mass, to study the effect of capillary elevation between flat sheets and to study and measurement of the effect of capillary elevation inside capillary tubes
	Resources: Mechanical scale, displacement vessel, bucket and cylinder; Parallel sheet capillary module; Capillary tubes module
M2	Topic: Hydrostatic Pressure
	Task: To calculate center of pressure and equivalent force at $\alpha = 90^{\circ}$; $\alpha > 90^{\circ}$ & $\alpha < 90^{\circ}$ (Flat surface partially and totally submerged)
	Resources: Water tank, tray with weight, balance bridge, mobile counterweight, quadrant, adjustable lids
M3	Topic: Horizontal Osborne-Reynolds Demonstration
	Task: To determine visually the conditions which differential regimes
	Resources: Hydraulic bench, FME 31(Horizontal Osborne-Reynolds Demonstration), Coloring matter, Chronometer or Stopwatch

No.	Information on Fluid Mechanics	II
1.	Unit Name: Fluid Mechanics II	
2.	Code: CE-32016	
3.	Classification: Engineering Subject	
4.	Credit Hour: 3	
5.	Semester and year Taught: 2/3	
6.	Pre-requisite (if any): None	
7.	Method of Delivery: Lecture and Practical	
8.	Assessment System and Breakdown of Marks	
	Practical	20%
	Tutorial	10%
	Final Examination	70%
	Total	100%
9.	Academic Staff Teaching Unit:	
10.	Objective of Unit:	
	The main aim of this subject is to understand the theory steady incompressible flow conditions through pipe pressure head, losses of head in pipes, performance of apply the theory of fluid mechanics in engineering appli	ies concerned with fluids, es in parallel or series, of turbines & pumps and cations.
11.	Learning Outcome of Unit	
	 At the end of the unit, a student shall be able to: 1. Explain and apply Darcy's and Chezy's formula, Momentum and Bernoulli's equation for loss of head in pipes, Characteristics, Significance and Specific of Turbines and Pumps, Theory of Machines. 2. Calculate and determine Pressure head and losses of head in pipes, Discharge, Velocity, Power, Efficiency and Speed for Turbines, Pumps and Machines. 	
12	Synonsis:	
12.	The unit is intended to understand and apply Fluid meas transmission through pipe lines, Theory of hydraulic ma turbines, Pump characteristics and selection.	urements, Power chines, pumps and

13.	Topic 1. Steady Incompressible Flow in Pipe and Duct Systems General approach Incompressible flow through ducts and pipes
	Incompressible flow through pipes in parallel
	Resistance coefficients for pipelines in series and in parallel
	The quantity balance method for pipe networks
	Topic 2. Fluid Pressure and its Measurement
	Introduction Pressure head
	Measurement of fluid pressure
	Tube gauges to measure fluid pressure
	Piezometer tube
	Manometer
	Simple manometer
	Micromanometer
	Differential manometer
	Inverted differential manometer
	Mechanical gauges
	Bourdon's tube pressure gauge
	Dead weight pressure gauge
	Dead weight pressure gauge
	Topic 3. Flow Through Simple Pipes
	Introduction
	Loss of field in pipes Darcy's formula for loss of head in pipes
	Chezy's formula for loss of head in pipes
	Hydraulic gradient line
	Total energy line
	Transmission of power through pipes
	Taris 4 Derformence of Turking
	Introduction
	Characteristics of turbines
	Unit power
	Unit speed
	Unit discharge
	Significance of unit power, unit speed, unit discharge
	Specific speed of a turbine
	Selection of turbines
	Selection based on head of water
	Selection based on nead of water

	Topic 5. Performance of Pumps
	Introduction
	Variation in Speed and Diameter of a Centrifugal Pump
	Effect of Variation in Speed
	Effect of Variation in Diameter
	Specific Speed of a Centrifugal Pump
	Selection of Centrifugal Pumps Based on Specific Speed
	Suction Head
	Vapour Pressure
	Net Positive Suction Head (NPSH)
	Topic 6. Theory of Hydraulic Machine
	Impact of free jets
	Hydraulic Turbines
	Governing and Performance of Hydraulic Turbines
	Reciprocating Pumps
	Centrifugal Pumps
	Miscellaneous Hydraulic Devices and Machines
1.4	
14.	Main References:
	1. R.S.Khurmi, A Textbook of Hydraulics, Fluid Mechanics and Hydraulic
	Machines SI Units . (19" edition)
15	Additional Defense of
15.	Additional Reference:
	1. John F. Douglas, Janusz M. Gastorek, John A. Swallield, Lynne B. Jack. Fluid Machanica (5 th adition)
	Mechanics. (5 edition) 2 Dr. K. D. Arora, Elvid Machanica, Hudraulia, and Hudraulia Machines. (0 th
	2. DI. K. K. Afora, Fluid Mechanics, Hydraulics and Hydraulic Machines. (9

Lab	Activity
M1	Topic: Basic Pipe Network
	Task: To study of the load losses in PVC pipes of 25mm diameter made of the same material and load losses in methacrylate pipe
	Resources: Pipe network equipment FME 23, Hydraulic bench, stop watch
M2	Topic: Energy Losses in Bends
	Task: To measure of the load losses for a short elbow of 90° and a middle elbow of 90°
	Resources: FME 05 Energy Losses in Bends, Chronometer
M3	Topic: Francis Turbine
	Task: To determine the operating features of the Francis Turbine
	Resources: Regulating device distributor, Braking system, Draft tube, Manometer, Tachometer, Hydraulic bench
M4	Topic: Impact of Jet
	Task: To determine impact against a flat surface, curve surface, semi-spherical Surface
	Resources: Water Jet apparatus, Hydraulic bench

Information on Lab Practical (Fluid Mechanics II)