No	Information of IT-41023		
1	Unit name:	Computer Architecture and	
		Organization	
2	Code:	IT-41023	
3	Classification:	Engineering Subject	
4	Credit value:	4	
5	Semester/ Year Offered:	I/IV	
6	Pre-requisite:	Basic HW/SW	
7	Mode of delivery:	Lecture, Practical, Tutorial	
8	Assessment system and breakdown of		
	marks:		
	Practical	20%	
	Tutorial	10%	
	Mid-term/ Final Examination	70%	
9	Academic staff teaching unit:	1	
10	Course outcome of unit:		
	In this course, students will be able		
	a. to have the basic skills for cor	nputer architecture and organization	
	b. to evaluate quantitatively computer performance by using benchmark		
	suites and skills		
	c. to improve computer performance by using hardware and software		
	techniques		
	d. to design and analyze the main functional units of a computer, a		
	sample instruction set for a th	neoretical machine and compare between	
	the different computer syst	ems structures according to a certain	
	criterion		
11	Synopsis of unit:		
	The course covers the interfacing of	software and hardware with computer	
	installed ModelSim. The course introduces the nature of computing, the element		
	of computer, first, second third generation of computer, structure versus		
	behavior, VHDL description, sequential circuit, register levels component and		
	design, queueing mode, accumulator b	based CPU, instruction sets coprocessor,	

	fixed-point arithmetic, register file, combinational and sequential ALU, floating	
	- point arithmetic, pipeline processing, hardware control, microprogrammed	
	control, CPU control unit, memory technology. There are examples and	
	exercises at the end of the most chapters to enhance the book's usefulness in the	
	classroom.	
12	Topic:	
	Design Methodology	
	2.1. System Design	
	System Representation	
	Design Process	
	The Gate Level	
	2.2. The Register Level	
	Register Level Components	
	Programmable Logic Devices	
	Register Level Design	
	2.3. The Processor Level	
	Processor Level Components	
	Processor Level Design	
	Processor Basics	
	3.1. CPU Organization	
	• Fundamentals	
	Additional Features	
	3.2. Data Representation	
	Basic Formats	
	Fixed Point Numbers	
	Floating Point Numbers	
	3.3. Instruction Sets	
	Instruction Formats	
	Instruction Types	
	Programming Considerations	
	Datapath Design	
	4.1. Fixed Point Arithmetic	

Addition & Subtraction
Multiplication
Division
4.2. Arithmetic Logic Unit
Combinational ALU
Sequential ALU
4.3. Advanced Topics
Floating Point Arithmetic
Pipeline Processing
Control Design
5.1. Basic Concepts
Introduction
Hardware Control
• Design Examples
5.2. Microprogrammed Control
Basic Concepts
Multiplier Control Unit
CPU Control Unit
5.3. Pipeline Control
Introduction Pipelines
Pipeline Performance
Superscalar Processing
Memory Organization
6.1. Memory Technology
Memory Device Characteristics
Random Access Memories
Serial Access Memories
6.2. Memory Systems
Multilevel Memories
Address Translation
Memory Allocation

	6.3. Caches
	Main Features
	Address Mapping
	Structure versus Performance
12	Main references:
	John P. Hayes, Computer Architecture and Organization, Third Edition.
	McGraw-Hill Series in Computer Science, Computer Organization and
	Architecture and Computer Engineer
13	Additional references:
	Nicholas P Carter, Computer Architecture and Organization. 2nd
	Edition.