No	Information of the subject		
1	Unit name:	Organic chemistry	
2	Code:	BioT21031	
3	Classification:	Core subject	
4	Credit value:	3	
5	Semester/ Year Offered:	1/2	
6	Pre-requisite:	Ten Standard Chemistry, Che 11011	
		Engineering Chemistry	
7	Mode of delivery:	Explain by Drawing structure and	
		equations, Solving problems, computer	
		application, Practical, Quiz, Discussion	
8	Assessment system and breakdown of	Fill in the blanks, Multiple choice, short	
	marks:	questions, problems, short notes, practical	
	Fill in the blanks, Multiple choice,	70%	
	problems, short questions, Short notes practical results, practical exam	30%	
	Animation and viva test		
9	Academic staff teaching unit:	Department of Biotechnology	
10	Course outcome of unit:		
	After completion of this course, students will be able		
	To rank increasing or decreasing order of boiling points, melting points, and		
	solubility of organic compounds		
	To assign the stereoisomers of compound	ds	
	To differentiate SN1, SN2, E1, or E2 me	chanism the reactions of alkyl halides	
	To write preparation and reaction mechanisms of alcohol, ether, and epoxides		
	To classify the reactions must be oxidation or reduction		
	To determine the structure of the compounds by using general features of mass		
	spectrometry and IR spectroscopy		
11	Synopsis of unit:		
	All biomolecules are organic compounds; therefore organic chemistry is the core		
	supplements for the biotechnologist and researchers. The valuable information from		
	this subjectwill fulfillthe variable requirements of human.Organic chemistry is the		
	basic for further study of biochemistry that is important for biotechnology. Organic		
	molecules with different functional groups can give different physical and reactive		

	properties. These effects are occurred in nylon production, soap solubility, and		
	solubility of vitamins. The role of stereochemistry occur in chiral drugs productions.		
	determination of oder of leaves name installas transmission ato. In calls advandling		
	determination of odor of leaves, nerve impulse transmission etc. In cells adrenaline		
	are produced by nucleophillic substitution reactions. Both nucleophillic and		
	elimination reactions are used in industrial products productions such as aspirin		
	synthesis, quinine synthesis, pesticide, plastic, and fruit ripening.Bronchodilators		
	from epoxide are used to treat asthma. Oxidation reduction reactions are the main		
	role in biochemical reactions of the cells. Oxidation reduction reactions are applied in		
	green chemistry. Mass spectrometry, and IR methods are very useful for research		
	areas such as protein structure determination, molecular weight identification, and		
	functional group determination.		
12	Topic:		
	3 Introduction to Organic Molecules and		
	Functional Groups		
	3.1 Functional Groups		
	3.2 An Overview of Functional Groups		
	3.3 Intermolecular Forces		
	3.4 Physical Properties		
	3.5 Application: Vitamins		
	3.6 Application of Solubility: Soap		
	3.7 Application: The Cell Membrane		
	3.8 Functional Groups and Reactivity		
	3.9 Biomolecules		
	5. Stereochemistry		
	5.1 Starch and Cellulose		
	5.2 The Two Major Classes of Isomers		
	5.3 Looking Glass Chemistry—Chiral and Achiral Molecules		
	5.4 Stereogenic Centers		
	5.5 Stereogenic Centers in Cyclic Compounds		
	5.6 Labeling Stereogenic Centers with R or S		
	5.7 Diastereomers		
	5.8 Meso Compounds		
	5.9 R and S Assignments in Compounds with Two or More Stereogenic Centers		
	5.10 Disubstituted Cycloalkanes		
	5.11 Isomers—A Summary		
	5.12 Physical Properties of Stereoisomers		
	5.13 Chemical Properties of Enantiomers		
	7 Alkyl Halides and Nucleophilic Substitution		
	7.1 Introduction to Alkyl Halides		
	7.2 Nomenclature		
	7.3 Physical Properties		
	7.4 Interesting Alkyl Halides		
	7.5 The Polar Carbon–Halogen Bond		
	7.6 General Features of Nucleophilic Substitution		

7.7 The Leaving Group
7.8 The Nucleophile
7.9 Possible Mechanisms for Nucleophilic Substitution
7.10 Two Mechanisms for Nucleophilic Substitution
7.11 The SN2 Mechanism
7.12 Application: Useful SN2 Reactions
7.13 The SN1 Mechanism
7.14 Carbocation Stability
7.15 The Hammond Postulate
7.16 Application: SN1 Reactions, Nitrosamines, and Cancer
7.17 When Is the Mechanism SN1 or SN2?
7.18 Vinyl Halides and Aryl Halides
7.19 Organic Synthesis
8 Alkyl Halides and Elimination Reactions
8.1 General Features of Elimination
8.2 Alkenes—The Products of Elimination Reactions
8.3 The Mechanisms of Elimination
8.4 The E2 Mechanism
8.5 The Zaitsev Rule
8.6 The E1 Mechanism
8.7 SN1 and E1 Reactions
8.8 Stereochemistry of the E2 Reaction
8.9 When Is the Mechanism E1 or E2?
8.10 E2 Reactions and Alkyne Synthesis
8.11 When Is the Reaction SN1, SN2, E1, or E2?
9 Alcohols, Ethers, and Epoxides
9.1 Introduction
9.2 Structure and Bonding
9.3 Nomenclature
9.4 Physical Properties
9.5 Interesting Alcohols, Ethers, and Epoxides
9.6 Preparation of Alcohols, Ethers, and Epoxides
9.7 General Features—Reactions of Alcohols, Ethers, and Epoxides
9.8 Dehydration of Alcohols to Alkenes
9.9 Carbocation Rearrangements
9.10 Dehydration Using POC13 and Pyridine
9.11 Conversion of Alcohols to Alkyl Halides with HX
9.12 Conversion of Alcohols to Alkyl Halides with SOCl2 and PBr3
9.13 Tosylate—Another Good Leaving Group
9.14 Reaction of Ethers with Strong Acid
9.15 Reactions of Epoxides
9.16 Application: Epoxides, Leukotrienes, and Asthma
9.17 Application: Benzo[a]pyrene, Epoxides, and Cancer
12 Oxidation and Reduction
12.1 Introduction
12.2 Reducing Agents
12.3 Reduction of Alkenes
12.4 Application: Hydrogenation of Oils
12.5 Reduction of Alkynes
12.6 The Reduction of Polar C–X σ Bonds

	12.7 Oxidizing Agents
	12.8 Epoxidation
	12.9 Dihydroxylation
	12.10 Oxidative Cleavage of Alkenes
	12.11 Oxidative Cleavage of Alkynes
	12.12 Oxidation of Alcohols
	12.13 Green Chemistry
	12.14 Application: The Oxidation of Ethanol
	12.15 SharplessEpoxidation
	13 Mass Spectrometry and Infrared Spectroscopy
	13.1 Mass Spectrometry
	13.2 Alkyl Halides and the $M + 2$ Peak
	13.3 Other Types of Mass Spectrometry
	13.4 Electromagnetic Radiation
	13.5 Infrared Spectroscopy
	13.6 IR Absorptions
	13.7 IR and Structure Determination
14	Main references:
	Organic Chemistry Second Edition Janice Gorzynski Smith
	University of Hawai'i at Manoa
5	Additional references:
5	
	Organic Chemistry Third EditionJanice Gorzynski Smith
	University of Hawai'i at Ma-noa